SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0992 7689 OR L773:1432 0576 ;pers:(Dandouras Iannis)"

Sökning: L773:0992 7689 OR L773:1432 0576 > Dandouras Iannis

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Giang, Tony, et al. (författare)
  • Outflowing protons and heavy ions as a source for the sub-keV ringcurrent
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:2, s. 839-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster CIS instrument have been used for studying proton and heavy ion (O+ and He+ ) char- acteristics of the sub-keV ring current. Thirteen events with dispersed heavy ions (O+ and He+ ) were identified out of two years (2001 and 2002) of Cluster data. Allevents took place during rather geomagnetically quiet periods. Three of those events have been investigated in detail: 21 August 2001, 26 November 2001 and 20 February 2002. These events were chosen from varying magnetic local times (MLT), and they showed different characteristics. In this article, we discuss the potential source for sub-keV ring current ions. We show that: (1) outflows of terrestrialsub-keV ions are supplied to the ring current also during quiet geomagnetic conditions; (2) the composition of the out-flow implies an origin that covers an altitude interval from the low-altitude ionosphere to the plasmasphere, and (3) terrestrial ions are moving upward along magnetic field lines, at times forming narrow collimated beams, but  frequently also as broad beams. Over time, the ion beams are expected to gradually become isotropised as a result of wave-particleinteraction, eventually taking the form of isotropic drifting sub-keV ion signatures. We argue that the sub-keV energy-time dispersed signatures originate from field-aligned terrestrial ion energising and outflow, which may occur at all local times and persist also during quiet times.
  •  
3.
  • Hamrin, Maria, et al. (författare)
  • Geomagnetic activity effects on plasma sheet energy conversion
  • 2010
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 28, s. 1813-1825
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article we use three years (2001, 2002, and 2004) of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs) in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs) and Concentrated Generator Regions (CGRs) from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.
  •  
4.
  • Palmroth, Minna, et al. (författare)
  • Lower-thermosphere-ionosphere (LTI) quantities : current status of measuring techniques and models
  • 2021
  • Ingår i: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 39:1, s. 189-237
  • Tidskriftsartikel (refereegranskat)abstract
    • The lower-thermosphere-ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.
  •  
5.
  • Slapak, Rikard, et al. (författare)
  • Atmospheric loss from the dayside open polar region and its dependence on geomagnetic activity: implications for atmospheric escape on evolutionary timescales
  • 2017
  • Ingår i: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 35:3, s. 721-731
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated the total O+ escape rate from the dayside open polar region and its dependence on geomagnetic activity, specifically Kp. Two different escape routes of magnetospheric plasma into the solar wind, the plasma mantle, and the high-latitude dayside magnetosheath have been investigated separately. The flux of O+ in the plasma mantle is sufficiently fast to subsequently escape further down the magnetotail passing the neutral point, and it is nearly 3 times larger than that in the dayside magnetosheath. The contribution from the plasma mantle route is estimated as  ∼ 3. 9 × 1024exp(0. 45 Kp) [s−1] with a 1 to 2 order of magnitude range for a given geomagnetic activity condition. The extrapolation of this result, including escape via the dayside magnetosheath, indicates an average O+ escape of 3 × 1026 s−1 for the most extreme geomagnetic storms. Assuming that the range is mainly caused by the solar EUV level, which was also larger in the past, the average O+ escape could have reached 1027–28 s−1 a few billion years ago. Integration over time suggests a total oxygen escape from ancient times until the present roughly equal to the atmospheric oxygen content today.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy