SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0992 7689 OR L773:1432 0576 ;pers:(Glassmeier K. H)"

Sökning: L773:0992 7689 OR L773:1432 0576 > Glassmeier K. H

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edberg, Niklas, et al. (författare)
  • Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:12, s. 4533-4545
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on new simultaneous in-situ observations at Mars from Rosetta and Mars Express (MEX) on how the Martian plasma environment is affected by high pressure solar wind. A significant sharp increase in solar wind density, magnetic field strength and turbulence followed by a gradual increase in solar wind velocity is observed during similar to 24 h in the combined data set from both spacecraft after Rosetta's closest approach to Mars on 25 February 2007. The bow shock and magnetic pileup boundary are coincidently observed by MEX to become asymmetric in their shapes. The fortunate orbit of MEX at this time allows a study of the inbound boundary crossings on one side of the planet and the outbound crossings on almost the opposite side, both very close to the terminator plane. The solar wind and interplanetary magnetic field (IMF) downstream of Mars are monitored through simultaneous measurements provided by Rosetta. Possible explanations for the asymmetries are discussed, such as crustal magnetic fields and IMF direction. In the same interval, during the high solar wind pressure pulse, MEX observations show an increased amount of escaping planetary ions from the polar region of Mars. We link the high pressure solar wind with the observed simultaneous ion outflow and discuss how the pressure pulse could also be associated with the observed boundary shape asymmetry.
  •  
2.
  • Eriksson, Tommy, et al. (författare)
  • On the excitation of ULF waves by solar wind pressure enhancements
  • 2006
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 24:11, s. 3161-3172
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the onset and development of an ultra low frequency (ULF) pulsation excited by a storm sudden commencement. On 30 August 2001, 14: 10 UT, the Cluster spacecraft are located in the dayside magnetosphere and observe the excitation of a ULF pulsation by a threefold enhancement in the solar wind dynamic pressure. Two different harmonics are observed by Cluster, one at 6.8 mHz and another at 27 mHz. We observe a compressional wave and the development of a toroidal and poloidal standing wave mode. The toroidal mode is observed over a narrow range of L-shells whereas the poloidal mode is observed to have a much larger radial extent. By looking at the phase difference between the electric and magnetic fields we see that for the first two wave periods both the poloidal and toroidal mode are travelling waves and then suddenly change into standing waves. We estimate the azimuthal wave number for the 6.8 mHz to be m = 10 +/- 3. For the 27 mHz wave, m seems to be several times larger and we discuss the implications of this. We conclude that the enhancement in solar wind pressure excites eigenmodes of the geomagnetic cavity/waveguide that propagate tailward and that these eigenmodes in turn couple to toroidal and poloidal mode waves. Thus our observations give firm support to the magnetospheric waveguide theory.
  •  
3.
  • Eriksson, Tommy, et al. (författare)
  • Poloidal ULF oscillations in the dayside magnetosphere : a Cluster study
  • 2005
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 23:7, s. 2679-2686
  • Tidskriftsartikel (refereegranskat)abstract
    • Three ULF wave events, all occurring in the dayside magnetopshere during magnetically quiet times, are studied using the Cluster satellites. The multi-point measurements obtained from Cluster are used to determine the azimuthal wave number for the events by means of the phase shift and the azimuthal separation between the satellites. Also, the polarisation of the electric and magnetic fields is examined in a field-aligned coordinate system, which, in turn, gives the mode of the oscillations. The large-inclination orbits of Cluster allow us to examine the phase relationship between the electric and magnetic fields along the field lines. The events studied have large azimuthal wave numbers (m similar to 100), two of them have eastward propagation and all are in the poloidal mode, consistent with the large wave numbers. We also use particle data from geosynchronous satellites to look for signatures of proton injections, but none of the events show any sign of enhanced proton flux. Thus, the drift-bounce resonance instability seems unlikely to have played any part in the excitation of these pulsations. As for the drift-mirror instability we conclude that it would require an unreasonably high plasma pressure for the instability criterion to be satisfied.
  •  
4.
  • Eriksson, Tommy, et al. (författare)
  • Sunward propagating Pc5 waves observed on the post-midnight magnetospheric flank
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:6, s. 1567-1579
  • Tidskriftsartikel (refereegranskat)abstract
    • The overall focus on the driver of toroidal Pc5 waves has been on processes located at or acting on the dayside magnetopause and dayside flanks of the magnetosphere. These processes can generate waves that propagate tailward in the magnetosphere. However, an increasing number of studies, both theoretical and experimental, have looked at waves propagating sunward and that are caused by processes in the magnetotail. Here we present an ultra low frequency (ULF) wave observed in the post-midnight/morning sector of the magnetosphere at L=16 R-E. The wave has a toroidal mode polarization. We estimate the azimuthal wave number to m=3, consistent with a toroidal mode type pulsation. The positive sign indicates that the wave is propagating sunward and this is confirmed by looking at the Poynting flux of the wave. The frequency of the wave is not constant with time but shows a small increase in the beginning of the event up to over 2.0 mHz. Then the frequency decreases to 1.0 mHz. This decrease coincides with a drop in the total magnetic field strength and we speculate if this is related to an observed reversal of the sign of the interplanetary magnetic field (IMF) By-component. This event occurs during relatively quiet magnetospheric conditions with a solar wind speed of approximately 400 km/s. Thus this event is highly likely to be driven by a source in the magnetotail and the change in frequency is an excellent example that the frequency of an ULF wave may be modulated by changes of the plasma parameters on the resonant field line.
  •  
5.
  • Johansson, T., et al. (författare)
  • Observation of an inner magnetosphere electric field associated with a BBF-like flow and PBIs
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:4, s. 1489-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Themis E observed a perpendicular (to the magnetic field) electric field associated with an Earthward plasma flow at XGSM=-9.6 R-E on 11 January 2008. The electric field observation resembles Cluster observations closer to Earth in the auroral region. The fast plasma flow shared some characteristics with bursty bulk flows (BBFs) but did not meet the usual criteria in maximum velocity and duration to qualify as one. Themis C observed the same flow further downtail but Themis D, separated by only 1 R-E in azimuthal direction from Themis E, did not. At the time of the electric field and ion flow event, the all-sky imager and ground-based magnetometer at Rankin Inlet observed Poleward Boundary Intensifications (PBIs) and a negative bay signature. None of the other Themis ground-based observatories recorded any significant auroral or magnetic field activity, indicating that this was a localized activity. The joint Themis in situ and ground-based observations suggest that the two observations are related. This indicates that auroral electric fields can extend to regions much farther out than previously seen in Cluster observations.
  •  
6.
  • Richter, I., et al. (författare)
  • Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:8, s. 1031-1036
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (delta B/B similar to 1), compressional magnetic field oscillations at similar to 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.
  •  
7.
  • Schaefer, S., et al. (författare)
  • Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere : a CLUSTER case study
  • 2007
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:4, s. 1011-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfven waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF) pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 R-E. the azimuthal wave number m approximate to 30, temporal evolution, and energy transport in the detected ULF pulsations.
  •  
8.
  • Schafer, S., et al. (författare)
  • Spatio-temporal structure of a poloidal Alfven wave detected by Cluster adjacent to the dayside plasmapause
  • 2008
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:7, s. 1805-1817
  • Tidskriftsartikel (refereegranskat)abstract
    • A case study of a poloidal ULF pulsation near the dayside plasmapause is presented based on Cluster observations of magnetic and electric fields. The pulsation is detected close to the magnetic equatorial plane at L shells L=[4.4, 4.6] and oscillates with a frequency of f=23 mHz. Investigating the wave energy flux reveals the standing wave nature of the observed pulsation. An estimation of the azimuthal wave number exposes a narrow azimuthal structure of the wave field with m approximate to 160. Spatial and temporal characteristics of the pulsation are analyzed in detail by representing data in a field line related coordinate system and a range-time-intensity representation. This allows an estimation of both the spatial extension of the wave field in the radial direction and its temporal decay rate. The analysis furthermore indicates that the same field lines are excited to a standing wave oscillation twice. Furthermore an accurate identification of a phase jump of the wave field across L shells is possible. Comparing the radial localization of the detected wave with theoretically expected field line eigenfrequencies reveals that the wave field is confined in the Alfven resonator at the outer edge of the plasmapause.
  •  
9.
  • Volwerk, M., et al. (författare)
  • Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko
  • 2016
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 34:1, s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • The data from all Rosetta plasma consortium instruments and from the ROSINA COPS instrument are used to study the interaction of the solar wind with the outgassing cometary nucleus of 67P/Churyumov-Gerasimenko. During 6 and 7 June 2015, the interaction was first dominated by an increase in the solar wind dynamic pressure, caused by a higher solar wind ion density. This pressure compressed the draped magnetic field around the comet, and the increase in solar wind electrons enhanced the ionization of the outflow gas through collisional ionization. The new ions are picked up by the solar wind magnetic field, and create a ring/ring-beam distribution, which, in a high-beta plasma, is unstable for mirror mode wave generation. Two different kinds of mirror modes are observed: one of small size generated by locally ionized water and one of large size generated by ionization and pick-up farther away from the comet.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy