SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0992 7689 OR L773:1432 0576 ;pers:(Nilsson Hans)"

Sökning: L773:0992 7689 OR L773:1432 0576 > Nilsson Hans

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Giang, Tony, et al. (författare)
  • Outflowing protons and heavy ions as a source for the sub-keV ringcurrent
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:2, s. 839-849
  • Tidskriftsartikel (refereegranskat)abstract
    • Data from the Cluster CIS instrument have been used for studying proton and heavy ion (O+ and He+ ) char- acteristics of the sub-keV ring current. Thirteen events with dispersed heavy ions (O+ and He+ ) were identified out of two years (2001 and 2002) of Cluster data. Allevents took place during rather geomagnetically quiet periods. Three of those events have been investigated in detail: 21 August 2001, 26 November 2001 and 20 February 2002. These events were chosen from varying magnetic local times (MLT), and they showed different characteristics. In this article, we discuss the potential source for sub-keV ring current ions. We show that: (1) outflows of terrestrialsub-keV ions are supplied to the ring current also during quiet geomagnetic conditions; (2) the composition of the out-flow implies an origin that covers an altitude interval from the low-altitude ionosphere to the plasmasphere, and (3) terrestrial ions are moving upward along magnetic field lines, at times forming narrow collimated beams, but  frequently also as broad beams. Over time, the ion beams are expected to gradually become isotropised as a result of wave-particleinteraction, eventually taking the form of isotropic drifting sub-keV ion signatures. We argue that the sub-keV energy-time dispersed signatures originate from field-aligned terrestrial ion energising and outflow, which may occur at all local times and persist also during quiet times.
  •  
2.
  • Goetz, Charlotte, et al. (författare)
  • Warm protons at comet 67P/Churyumov-Gerasimenko-implications for the infant bow shock
  • 2021
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 39:3, s. 379-396
  • Tidskriftsartikel (refereegranskat)abstract
    • The plasma around comet 67P/Churyumov-Gerasimenko showed remarkable variability throughout the entire Rosetta mission. Plasma boundaries such as the diamagnetic cavity, solar wind ion cavity and infant bow shock separate regions with distinct plasma parameters from each other. Here, we focus on a particular feature in the plasma: warm, slow solar wind protons. We investigate this particular proton population further by focusing on the proton behaviour and surveying all of the Rosetta comet phase data. We find over 300 events where Rosetta transited from a region with fast, cold protons into a region with warm, slow protons. We investigate the properties of the plasma and magnetic field at this boundary and the location where it can be found. We find that the protons are preferentially detected at intermediate gas production rates with a slight trend towards larger cometocentric distances for higher gas production rates. The events can mostly be found in the positive convective electric field hemisphere. These results agree well with simulations of the infant bow shock (IBS), an asymmetric structure in the plasma environment previously detected on only 2 d during the comet phase. The properties of the plasma on both sides of this structure are harder to constrain, but there is a trend towards higher electron flux, lower magnetic field, higher magnetic field power spectral density and higher density in the region that contains the warm protons. This is in partial agreement with the previous IBS definitions; however, it also indicates that the plasma and this structure are highly non-stationary. For future research, Comet Interceptor, with its multi-point measurements, can help to disentangle the spatial and temporal effects and give more clarity on the influence of changing upstream conditions on the movement of boundaries in this unusual environment.
  •  
3.
  • Gunell, Herbert, et al. (författare)
  • Ion acoustic waves near a comet nucleus : Rosetta observations at comet 67P/Churyumov-Gerasimenko
  • 2021
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 39:1, s. 53-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion acoustic waves were observed between 15 and 30 km from the centre of comet 67P/Churyumov-Gerasimenko by the Rosetta spacecraft during its close flyby on 28 March 2015. There are two electron populations: one cold at k(B)T(e) approximate to 0.2 eV and one warm at k(B)T(e) approximate to 2 eV. The ions are dominated by a cold (a few hundredths of electronvolt) distribution of water group ions with a bulk speed of (3-3.7) km s(-1). A warm k(B)T(e) approximate to 6 eV ion population, which also is present, has no influence on the ion acoustic waves due to its low density of only 0.25 % of the plasma density. Near closest approach the propagation direction was within 50 degrees from the direction of the bulk velocity. The waves, which in the plasma frame appear below the ion plasma frequency f(pi) approximate to 2 kHz, are Doppler-shifted to the spacecraft frame where they cover a frequency range up to approximately 4 kHz. The waves are detected in a region of space where the magnetic field is piled up and draped around the inner part of the ionised coma. Estimates of the current associated with the magnetic field gradient as observed by Rosetta are used as input to calculations of dispersion relations for current-driven ion acoustic waves, using kinetic theory. Agreement between theory and observations is obtained for electron and ion distributions with the properties described above. The wave power decreases over cometocentric distances from 24 to 30 km. The main difference between the plasma at closest approach and in the region where the waves are decaying is the absence of a significant current in the latter. Wave observations and theory combined supplement the particle measurements that are difficult at low energies and complicated by spacecraft charging.
  •  
4.
  • Johansson, Tommy, et al. (författare)
  • Intense high-altitude auroral electric fields : temporal and spatial characteristics
  • 2004
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 22:7, s. 2485-2495
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster electric field, magnetic field, and energetic electron data are analyzed for two events of intense auroral electric field variations, both encountered in the Plasma Sheet Boundary Layer (PSBL), in the evening local time sector, and at approximately 5 R-E geocentric distance. The most intense electric fields (peaking at 450 and 1600 mV/m, respectively) were found to be quasi-static, unipolar, relatively stable on the time scale of at least half a minute, and associated with moving downward FAC sheets (peaking at similar to10 muA/m(2)), downward Poynting flux (peaking at similar to35 mW/m(2)), and upward electron beams with characteristic energies consistent with the perpendicular potentials (all values being mapped to 1 R-E geocentric distance). For these two events in the return current region, quasi-static electric field structures and associated FACs were found to dominate the upward acceleration of electrons, as well as the energy transport between the ionosphere and the magnetosphere, although Alfven waves clearly also contributed to these processes.
  •  
5.
  • Johansson, Tommy, et al. (författare)
  • On the profile of intense high-altitude auroral electric fields at magnetospheric boundaries
  • 2006
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 24:6, s. 1713-1723
  • Tidskriftsartikel (refereegranskat)abstract
    • The profile of intense high-altitude electric fields on auroral field lines has been studied using Cluster data. A total of 41 events with mapped electric field magnitudes in the range between 0.5-1 V/m were examined, 27 of which were co-located with a plasma boundary, defined by gradients in particle flux, plasma density and plasma temperature. Monopolar electric field profiles were observed in 11 and bipolar electric field profiles in 16 of these boundary-associated electric field events. Of the monopolar fields, all but one occurred at the polar cap boundary in the late evening and midnight sectors, and the electric fields were typically directed equatorward, whereas the bipolar fields all occurred at plasma boundaries clearly within the plasma sheet. These results support the prediction by Marklund et al. (2004), that the electric field profile depends on whether plasma populations, able to support intense field-aligned currents and closure by Pedersen currents, exist on both sides, or one side only, of the boundary.
  •  
6.
  • Johansson, Tommy, et al. (författare)
  • Scale sizes of intense auroral electric fields observed by Cluster
  • 2007
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 25:11, s. 2413-2425
  • Tidskriftsartikel (refereegranskat)abstract
    • The scale sizes of intense (>0.15 V/m, mapped to the ionosphere), high-altitude (4-7 R-E geocentric distance) auroral electric fields (measured by the Cluster EFW instrument) have been determined in a statistical study. Monopolar and bipolar electric fields, and converging and diverging events, are separated. The relations between the scale size, the intensity and the potential variation are investigated. The electric field scale sizes are further compared with the scale sizes and widths of the associated field-aligned currents (FACs). The influence of, or relation between, other parameters (proton gyroradius, plasma density gradients, and geomagnetic activity), and the electric field scale sizes are considered. The median scale sizes of these auroral electric field structures are found to be similar to the median scale sizes of the associated FACs and the density gradients (all in the range 4.2-.9 km) but not to the median proton gyroradius or the proton inertial scale length at these times and locations (22-30km). (The scales are mapped to the ionospheric altitude for reference.) The electric field scale sizes during summer months and high geomagnetic activity (K-p>3) are typically 2-3 km, smaller than the typical 4-5 km scale sizes during winter months and low geomagnetic activity (K-p <= 3), indicating a dependence on ionospheric conductivity.
  •  
7.
  • Karlsson, Tomas, 1964-, et al. (författare)
  • Solar wind magnetic holes can cross the bow shock and enter the magnetosheath
  • 2022
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 40:6, s. 687-699
  • Tidskriftsartikel (refereegranskat)abstract
    • Solar wind magnetic holes are localized depressions of the magnetic field strength, on timescales of seconds to minutes. We use Cluster multipoint measurements to identify 26 magnetic holes which are observed just upstream of the bow shock and, a short time later, downstream in the magnetosheath, thus showing that they can penetrate the bow shock and enter the magnetosheath. For two magnetic holes, we show that the relation between upstream and downstream properties of the magnetic holes are well described by the MHD (magnetohydrodynamic) Rankine-Hugoniot (RH) jump conditions. We also present a small statistical investigation of the correlation between upstream and downstream observations of some properties of the magnetic holes. The temporal scale size and magnetic field rotation across the magnetic holes are very similar for the upstream and downstream observations, while the depth of the magnetic holes varies more. The results are consistent with the interpretation that magnetic holes in Earth's and Mercury's magnetosheath are of solar wind origin, as has previously been suggested. Since the solar wind magnetic holes can enter the magnetosheath, they may also interact with the magnetopause, representing a new type of localized solar wind-magnetosphere interaction.
  •  
8.
  • Kirkwood, Sheila, et al. (författare)
  • Response of polar mesosphere summer echoes to geomagnetic disturbances in the Southern and Northern Hemispheres : The importance of nitric oxide
  • 2013
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 31:2, s. 333-347
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationship between polar mesosphere summer echoes (PMSE) and geomagnetic disturbances (represented by magnetic I K indices) is examined. Calibrated PMSE reflectivities for the period May 2006-February 2012 are used from two 52.0/54.5 MHz radars located in Arctic Sweden (68 N, geomagnetic latitude 65 ) and at two different sites in Queen Maud Land, Antarctica (73/72 S, geomagnetic latitudes 62/63 ). In both the Northern Hemisphere (NH) and the Southern Hemisphere (SH) there is a strong increase in mean PMSE reflectivity between quiet and disturbed geomagnetic conditions. Mean volume reflectivities are slightly lower at the SH locations compared to the NH, but the position of the peak in the lognormal distribution of PMSE reflectivities is close to the same at both NH and SH locations, and varies only slightly with magnetic disturbance level. Differences between the sites, and between geomagnetic disturbance levels, are primarily due to differences in the high-reflectivity tail of the distribution. PMSE occurrence rates are essentially the same at both NH and SH locations during most of the PMSE season when a sufficiently low detection threshold is used so that the peak in the lognormal distribution is included. When the local-time dependence of the PMSE response to geomagnetic disturbance level is considered, the response in the NH is found to be immediate at most local times, but delayed by several hours in the afternoon sector and absent in the early evening. At the SH sites, at lower magnetic latitude, there is a delayed response (by several hours) at almost all local times. At the NH (auroral zone) site, the dependence on magnetic disturbance is highest during evening-to-morning hours. At the SH (sub-auroral) sites the response to magnetic disturbance is weaker but persists throughout the day. While the immediate response to magnetic activity can be qualitatively explained by changes in electron density resulting from energetic particle precipitation, the delayed response can largely be explained by changes in nitric oxide concentrations. Observations of nitric oxide concentration at PMSE heights by the Odin satellite support this hypothesis. Sensitivity to geomagnetic disturbances, including nitric oxide produced during these disturbances, can explain previously reported differences between sites in the auroral zone and those at higher or lower magnetic latitudes. The several-day lifetime of nitric oxide can also explain earlier reported discrepancies between high correlations for average conditions (year-by-year PMSE reflectivities and indices) and low correlations for minute-to-day timescales
  •  
9.
  • Pitkänen, Timo, 1979-, et al. (författare)
  • Azimuthal velocity shear within an Earthward fast flow : further evidence for magnetotail untwisting?
  • 2015
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33, s. 245-255
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that nonzero interplanetary magnetic field By conditions lead to a twisted magnetotail configuration. The plasma sheet is rotated around its axis and tail magnetic field lines are twisted, which causes an azimuthal displacementof their ionospheric footprints. According to the untwisting hypothesis, the untwisting of twisted field lines is suggested to influence the azimuthal direction of convective fast flows in the nightside geospace. However, there is a lack of in situ magnetospheric observations, which show actual signatures of the possible untwisting process. In this paper, we report detailed Cluster observations of an azimuthal flow shear across the neutral sheet associated with an Earthward fast flow on 5 September 2001. The observations show a flow shear velocity pattern with a Vperpy sign change, near the neutral sheet (Bx  0) within a fast flow during the neutral sheet flapping motion over the spacecraft. Firstly, this implies that convective fast flows may not generally be unidirectional across the neutral sheet, but may have a more complex structure. Secondly, in this event tail By and the flow shear are as expected by the untwisting hypothesis. The analysis of the flow shear reveals a linear dependence between Bx and Vperpy close to the neutral sheet and suggests that Cluster crossed the neutral sheet in the dawnward part of the fast flow channel. The magnetospheric observations are supported by the semi-empirical T96 and TF04 models. Furthermore, the ionospheric SuperDARN convection maps support the satellite observations proposing that the azimuthal component of the magnetospheric flows is enforced by a magnetic field untwisting. In summary,the observations give strong supportive evidence to the tail untwisting hypothesis. However, the T96 ionospheric mapping demonstrates the limitations of the model in mapping from a twisted tail.
  •  
10.
  • Schillings, Audrey, et al. (författare)
  • Relative outflow enhancements during major geomagnetic storms : Cluster observations
  • 2017
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 5:6, s. 1341-1352
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of ion outflow from the polar ionosphere is known to vary by orders of magnitude, depending on the geomagnetic activity. However, the upper limit of the outflow rate during the largest geomagnetic storms is not well constrained due to poor spatial coverage during storm events. In this paper, we analyse six major geomagnetic storms between 2001 and 2004 using Cluster data. The six major storms fulfil the criteria of Dst 100 nT or Kp 7C. Since the shape of the magnetospheric regions (plasma mantle, lobe and inner magnetosphere) are distorted during large magnetic storms, we use both plasma beta and ion characteristics to define a spatial box where the upward OC flux scaled to an ionospheric reference altitude for the extreme event is observed. The relative enhancement of the scaled outflow in the spatial boxes as compared to the data from the full year when the storm occurred is estimated. Only OC data were used because HC may have a solar wind origin. The storm time data for most cases showed up as a clearly distinguishable separate peak in the distribution toward the largest fluxes observed. The relative enhancement in the outflow region during storm time is 1 to 2 orders of magnitude higher compared to less disturbed time. The largest relative scaled outflow enhancement is 83 (7 November 2004) and the highest scaled OC outflow observed is 2 1014 m2 s1 (29 October 2003).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy