SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0992 7689 OR L773:1432 0576 ;pers:(Stenberg Gabriella)"

Sökning: L773:0992 7689 OR L773:1432 0576 > Stenberg Gabriella

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backrud-Ivgren, Marie, et al. (författare)
  • Cluster observations and theoretical identification of broadband waves in the auroral region
  • 2005
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 23:12, s. 3739-3752
  • Tidskriftsartikel (refereegranskat)abstract
    • Broadband waves are common on auroral field lines. We use two different methods to study the polarization of the waves at 10 to 180 Hz observed by the Cluster spacecraft at altitudes of about 4 Earth radii in the nightside auroral region. Observations of electric and magnetic wave fields, together with electron and ion data, are used as input to the methods. We find that much of the wave emissions are consistent with linear waves in homogeneous plasma. Observed waves with a large electric field perpendicular to the geomagnetic field are more common (electrostatic ion cyclotron waves), while ion acoustic waves with a large parallel electric field appear in smaller regions without suprathermal (tens of eV) plasma. The regions void of suprathermal plasma are interpreted as parallel potential drops of a few hundred volts.
  •  
2.
  • Gunell, Herbert, et al. (författare)
  • Ion acoustic waves near a comet nucleus : Rosetta observations at comet 67P/Churyumov-Gerasimenko
  • 2021
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 39:1, s. 53-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion acoustic waves were observed between 15 and 30 km from the centre of comet 67P/Churyumov-Gerasimenko by the Rosetta spacecraft during its close flyby on 28 March 2015. There are two electron populations: one cold at k(B)T(e) approximate to 0.2 eV and one warm at k(B)T(e) approximate to 2 eV. The ions are dominated by a cold (a few hundredths of electronvolt) distribution of water group ions with a bulk speed of (3-3.7) km s(-1). A warm k(B)T(e) approximate to 6 eV ion population, which also is present, has no influence on the ion acoustic waves due to its low density of only 0.25 % of the plasma density. Near closest approach the propagation direction was within 50 degrees from the direction of the bulk velocity. The waves, which in the plasma frame appear below the ion plasma frequency f(pi) approximate to 2 kHz, are Doppler-shifted to the spacecraft frame where they cover a frequency range up to approximately 4 kHz. The waves are detected in a region of space where the magnetic field is piled up and draped around the inner part of the ionised coma. Estimates of the current associated with the magnetic field gradient as observed by Rosetta are used as input to calculations of dispersion relations for current-driven ion acoustic waves, using kinetic theory. Agreement between theory and observations is obtained for electron and ion distributions with the properties described above. The wave power decreases over cometocentric distances from 24 to 30 km. The main difference between the plasma at closest approach and in the region where the waves are decaying is the absence of a significant current in the latter. Wave observations and theory combined supplement the particle measurements that are difficult at low energies and complicated by spacecraft charging.
  •  
3.
  • Hall, J. O., et al. (författare)
  • Formation of lower-hybrid solitary structures by modulational interaction between lower-hybrid and dispersive Alfven waves
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:3, s. 1027-1033
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the possibility that lower-hybrid solitary structures (LHSS), which are frequently observed in the Earth's ionosphere and magnetosphere, are formed as a result of a modulational interaction between lower-hybrid and dispersive Alfven waves of initially small amplitude. A large amplitude lower-hybrid pump wave can excite density structures with length scales transverse to the geomagnetic field of the order of the ion gyroradius via a modulational instability. The structure formation in the nonlinear stage of the instability is investigated by numerical solutions of the governing equations, using plasma parameters relevant for LHSS observations in the upper ionosphere and in the magnetosphere. The numerical solutions reveal that the lower-hybrid waves become self-localized inside cylindrically symmetric (with respect to the ambient magnetic field) density cavities, in qualitative agreement with observations. Our model includes thermal electron effects but shows no stabilization at the ion sound gyroradius, suggesting that any preference of observed LHSS for that perpendicular scale likely is due to processes arresting the cavity collapse.
  •  
4.
  • Stenberg, Gabriella, et al. (författare)
  • Electron-scale sheets of whistlers close to the magnetopause
  • 2005
  • Ingår i: Annales Geophysicae. - Göttingen : Copernicus gesellschaft. - 0992-7689 .- 1432-0576. ; 23:12, s. 3715-3725
  • Tidskriftsartikel (refereegranskat)abstract
    • Whistler emissions close to the magnetopause on the magnetospheric side are investigated using the four Cluster spacecraft. The waves are found to be generated in thin (electron-scale) sheets moving with the plasma drift velocity. A feature in the electron data coincides with the waves; hot magnetospheric electrons disappear for a few satellite spins. This produces or enhances a temperature anisotropy, which is found to be responsible for the generation of the whistler mode waves. The high energy electrons are thought to be lost through the magnetopause and we suggest that the field lines, on which the waves are generated, are directly connected to a reconnection diffusion region at the magnetopause.
  •  
5.
  • Stenberg, Gabriella, et al. (författare)
  • Internal structure and spatial dimensions of whistler wave regions in the magnetopause boundary layer
  • 2007
  • Ingår i: Annales Geophysicae. - : European Geosciences Union (EGU). - 0992-7689 .- 1432-0576. ; 25:11, s. 2439-2451
  • Tidskriftsartikel (refereegranskat)abstract
    • We use whistler waves observed close to the magnetopause as an instrument to investigate the internal structure of the magnetopause-magnetosheath boundary layer. We find that this region is characterized by tube-like structures with dimensions less than or comparable with an ion inertial length in the direction perpendicular to the ambient magnetic field. The tubes are revealed as they constitute regions where whistler waves are generated and propagate. We believe that the region containing tube-like structures extend several Earth radii along the magnetopause in the boundary layer. Within the presumed wave generating regions we find current structures moving at the whistler wave group velocity in the same direction as the waves.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy