SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1045 2257 ;pers:(Strömbeck Bodil)"

Sökning: L773:1045 2257 > Strömbeck Bodil

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Barbouti, Aikaterini, et al. (författare)
  • Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression.
  • 2002
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 35:2, s. 127-137
  • Tidskriftsartikel (refereegranskat)abstract
    • During the initial indolent chronic phase of chronic myeloid leukemia (CML), the t(9;22)(q34;q11), resulting in the Philadelphia chromosome (Ph), is usually the sole cytogenetic anomaly, but as the disease progresses into the accelerated phase (AP), and eventually into aggressive blast crisis (BC), secondary aberrations, mainly unbalanced changes such as +8, i(17q), and +Ph, are frequent. To date, molecular genetic studies of CML BC have mainly focused on alterations of well-known tumor-suppressor genes (e.g., TP53, CDKN2A, and RB1) and oncogenes (e.g., RAS and MYC), whereas limited knowledge is available about the molecular genetic correlates of the unbalanced chromosomal abnormalities. Balanced secondary changes are rare in CML AP/BC, but it is not known whether cryptic chromosomal translocations, generating fusion genes, may be responsible for disease progression in a subgroup of CML. To address this issue, we used multicolor combined binary ratio fluorescence in situ hybridization (FISH), which allows the simultaneous visualization of all 24 chromosomes in different colors, verified by locus-specific FISH in a series of 33 CML cases. Two cryptic balanced translocations, t(7;17)(q32-34;q23) and t(7;17)(p15;q23), were found in two of the five cases showing the t(9;22) as the only cytogenetic change. Using several BAC clones, the breakpoints at 17q23 in both cases were mapped within a 350-kb region. In the case with the 7p15 breakpoint, a BAC clone containing the HOXA gene cluster displayed a split signal, suggesting a possible creation of a fusion gene involving a member of the HOXA family. Furthermore, one case with a partially cryptic t(9;11)(p21-22;q23) and an MLL rearrangement as well as a previously unreported t(3;10)(p22;p12-13) were identified. Altogether, a refined karyotypic description was achieved in 12 (36%) of the 33 investigated cases, illustrating the value of using multicolor FISH for identifying pathogenetically important aberrations in CML AP/BC.
  •  
3.
  • Fioretos, Thoas, et al. (författare)
  • Fusion of the BCR and the fibroblast growth factor receptor-1 (FGFR1) genes as a result of t(8;22)(p11;q11) in a myeloproliferative disorder: the first fusion gene involving BCR but not ABL
  • 2001
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 98:11, s. 558-558
  • Tidskriftsartikel (refereegranskat)abstract
    • Constitutive activation of tyrosine kinases as a consequence of chromosomal translocations, forming fusion genes, plays an important role in the development of hematologic malignancies, in particular, myeloproliferative syndromes (MPSs). In this respect, the t(9;22)(q34;q11) that results in the BCR/ABL fusion gene in chronic myeloid leukemia is one of the best-studied examples. The fibroblast growth factor receptor 1 (FGFR1) gene at 8p11 encodes a transmembrane receptor tyrosine kinase and is similarly activated by chromosomal translocations, in which three alternative genes-ZNF198 at 13q12, CEP110 at 9q34, and FOP at 6q27-become fused to the tyrosine kinase domain of FGFR1. These 8p11-translocations are associated with characteristic morphologic and clinical features, referred to as "8p11 MPS." In this study, we report the isolation and characterization of a novel fusion gene in a hematologic malignancy with a t(8;22)(p11;q11) and features suggestive of 8p11 MPS. We show that the breakpoints in the t(8;22) occur within introns 4 and 8 of the BCR and FGFR1 genes, respectively. On the mRNA level, the t(8;22) results in the fusion of BCR exons 1-4 in-frame with the tyrosine kinase domain of FGFR1 as well as in the expression of a reciprocal FGFR1/BCR chimeric transcript. By analogy with data obtained from previously characterized fusion genes involving FGFR1 and BCR/ABL, it is likely that the oligomerization domain contributed by BCR is critical and that its dimerizing properties lead to aberrant FGFR1 signaling and neoplastic transformation.
  •  
4.
  • Jin, Charlotte, et al. (författare)
  • Characterization of chromosome aberrations in salivary gland tumors by FISH, including multicolor COBRA-FISH
  • 2001
  • Ingår i: Genes, Chromosomes and Cancer. - 1045-2257. ; 30:2, s. 161-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescence in situ hybridization (FISH), including COBRA-FISH, was used to characterize 11 salivary gland tumors that had been investigated by banding analysis. Five cases were pleomorphic adenoma (PA), three were adenoid cystic carcinoma, and one case each was mucoepidermoid carcinoma, carcinoma ex-pleomorphic adenoma (CaPA), and adenocarcinoma. All 11 cases were selected on the basis that they had shown rearrangement of 6q or 9p or had unresolved aberrations after karyotyping. The COBRA-FISH and FISH analyses led to a revised karyotype in all informative cases and made it possible to clarify almost all chromosomal rearrangements occurring in the tumors. Of particular note were the confirmation of the existence of 6q deletions, a common change in salivary gland carcinomas, and the demonstration that a seemingly balanced t(6;9) resulted in del(6q). Other rearrangements that were revealed by FISH included amplification of 12q sequences (MDM2 and CDK4) in one PA. We also investigated the status of the PLAG1 gene in four cases (one PA, one CaPA, one adenoid cystic carcinoma, and one mucoepidermoid carcinoma) with 8q12 rearrangements. Only in the former two cases were the FISH results compatible with intragenic rearrangements. Overall, the results of the study show that, even with good banding quality and in karyotypes of modest complexity, much new information will be gained by supplementing the banding analysis with a multicolor FISH approach, such as COBRA-FISH.
  •  
5.
  • Johansson, Bertil, et al. (författare)
  • Isodicentric 7p, idic(7)(q11.2), in acute myeloid
  • 2001
  • Ingår i: Genes, Chromosomes and Cancer. - 1045-2257. ; 30:3, s. 261-266
  • Tidskriftsartikel (refereegranskat)abstract
    • Three adult de novo acute myeloid leukemias (AML M1, M2, and M4) with an isochromosome 7p are presented. No additional abnormalities were deterred by G-band and multicolor, using combined binary ratio labeling, fluorescence in situ hybridization (FISH) analyses, indicating that the i(7p) was the sole. i.e., the primary, chromosomal aberration. Although the patients were elderly-68, 72, and 78 years old-they all responded very well to chemotherapy, achieving complete remission lasting more than a year. Further FISH analyses, using painting, centromeric, as well as 7q11.2-specific YAC probes, revealed that the i(7p) contained two centromeres and that the breakpoints were located in 7q11.2. Thus, the abnormality should formally be designated idic(7)(q11.2). The detailed mapping disclosed a breakpoint heterogeneity, with the breaks in 7q11.2 varying among the cases, being at least 1,310 kb apart. Furthermore, the breakpoints also differed within one of the cases, being located on both the proximal and the distal side of the most centromeric probe used. Based on our three patients, as well as on a previously reported 82-year-old patient with AML M2 and idic(7)(q11) as the only chromosomal change, we suggest that this abnormality, as the sole anomaly, is associated with AML in elderly patients who display a good response to induction chemotherapy and. hence, have a favorable prognosis. Furthermore, the heterogeneous breakpoints in 7q11.2 suggest that the important functional outcome of the idic(7)(q11.2) is the genomic imbalance incurred, i.e., gain of 7p and loss of 7q material, rather than a rearrangement of a specific gene.
  •  
6.
  •  
7.
  •  
8.
  • Paulsson, Kajsa, et al. (författare)
  • Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia
  • 2005
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 44:2, s. 113-122
  • Tidskriftsartikel (refereegranskat)abstract
    • High hyperdiploidy (>50 chromosomes) in childhood acute lymphoblastic leukemia (ALL) is characterized by nonrandom multiple trisomies and tetrasomies involving in particular chromosomes X, 4, 6, 8, 10, 14, 17, 18, and 21. This characteristic karyotypic pattern, the most common in pediatric ALL, may arise via a tetraploid state with subsequent loss of chromosomes, by sequential gains of chromosomes in consecutive cell divisions, or by simultaneous gain of chromosomes in a single mitosis. These alternatives may be distinguished by investigation of the allelic ratios of loci on the tetrasomic and disomic chromosomes. Previous studies of tetrasomy 21 and of the occurrence of uniparental disomies (UPDs) have suggested that the most likely mechanism is simultaneous gain. However, the other pathways have not been definitely excluded because complete analyses of all disomies and tetrasomies have never been performed. In the present study, we investigated 27 hyperdiploid ALLs by using 58 polymorphic microsatellite markers mapped to 23 of the 24 human chromosomes. Twenty-six tetrasomies were analyzed (involving chromosomes X, 8, 10, 14, 18, and 21), and the frequency of UPDs was determined in 10 cases. In total, 200 chromosomes were studied. Equal allele dosage was observed in 24 of 26 tetrasomies, and only 7 UPDs were found. These data strongly suggest that hyperdiploidy in childhood ALL generally arises by a simultaneous gain of all additional chromosomes in a single abnormal mitosis. © 2005 Wiley-Liss, Inc.
  •  
9.
  • Paulsson, Kajsa, et al. (författare)
  • Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia
  • 2008
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 47:1, s. 26-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it has been suggested that mutations of the FLT3, NRAS, KRAS, and PTPN11 genes are particularly frequent in high hyperdiploid (>50 chromosomes) pediatric acute lymphoblastic leukemias (ALLs), this has as yet not been confirmed in a large patient cohort. Furthermore, it is unknown whether mutations of these genes coexist in hyperdiploid cases. We performed mutation analyses of FLT3, NRAS, KRAS, and PTPN11 in a consecutive series of 78 high hyperdiploid ALLs. Twenty-six (33%) of the cases harbored a mutation, comprising six activating point mutations and one internal tandem duplication of FLT3 (7/78 cases, 9.0%), eight codon 12, 13, or 61 NRAS mutations (8/78 cases, 10%), five codon 12 or 13 KRAS mutations (5/78 cases, 6.4%), and seven exon 3 or 13 PTPN11 mutations (7/78 cases, 9.0%). No association was seen between the presence of a mutation in FLT3, NRAS, KRAS, or PTPN11 and gender, age, white blood cell count, or relapse, suggesting that they do not confer a negative prognostic impact. Only one case harbored mutations in two different genes, suggesting that mutations of these four genes are generally mutually exclusive. In total, one third of the cases harbored a FLT3, NRAS, KRAS, or PTPN11 mutation, identifying the RTK-RAS signaling pathway as a potential target for novel therapies of high hyperdiploid pediatric ALLs. © 2007 Wiley-Liss, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy