SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1070 664X OR L773:1089 7674 ;lar1:(lu)"

Sökning: L773:1070 664X OR L773:1089 7674 > Lunds universitet

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Audet, T. L., et al. (författare)
  • Investigation of ionization-induced electron injection in a wakefield driven by laser inside a gas cell
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionization-induced electron injection was investigated experimentally by focusing a driving laser pulse with a maximum normalized potential of 1.2 at different positions along the plasma density profile inside a gas cell, filled with a gas mixture composed of 99%H2+1%N2. Changing the laser focus position relative to the gas cell entrance controls the accelerated electron bunch properties, such as the spectrum width, maximum energy, and accelerated charge. Simulations performed using the 3D particle-in-cell code WARP with a realistic density profile give results that are in good agreement with the experimental ones. The interest of this regime for optimizing the bunch charge in a selected energy window is discussed.
  •  
2.
  • Aurand, B., et al. (författare)
  • Manipulation of the spatial distribution of laser-accelerated proton beams by varying the laser intensity distribution
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1089-7674 .- 1070-664X. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a study of the spatial profile of proton beams produced through target normal sheath acceleration using flat target foils and changing the laser intensity distribution on the target front surface. This is done by either defocusing a single laser pulse or by using a split-pulse setup and irradiating the target with two identical laser pulses with variable spatial separation. The resulting proton beam profile and the energy spectrum are recorded as functions of the focal spot size of the single laser pulse and of the separation between the two pulses. A shaping of the resulting proton beam profile, related to both an increase in flux of low-energy protons in the target normal direction and a decrease in their divergence, in one or two dimensions, is observed. The results are explained by simple modelling of rear surface sheath field expansion, ionization, and projection of the resulting proton beam.
  •  
3.
  • Coury, M., et al. (författare)
  • Injection and transport properties of fast electrons in ultraintense laser-solid interactions
  • 2013
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 20:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast electron injection and transport in solid foils irradiated by sub-picosecond-duration laser pulses with peak intensity equal to 4 x 10(20)W/cm(2) is investigated experimentally and via 3D simulations. The simulations are performed using a hybrid-particle-in-cell (PIC) code for a range of fast electron beam injection conditions, with and without inclusion of self-generated resistive magnetic fields. The resulting fast electron beam transport properties are used in rear-surface plasma expansion calculations to compare with measurements of proton acceleration, as a function of target thickness. An injection half-angle of similar to 50 degrees - 70 degrees is inferred, which is significantly larger than that derived from previous experiments under similar conditions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799726]
  •  
4.
  • Dalui, Malay, et al. (författare)
  • Manifestation of anharmonic resonance in the interaction of intense ultrashort laser pulses with microstructured targets
  • 2016
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 23:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of the basic processes responsible for an efficient heating of intense laser produced plasmas is one of the important features of high intensity laser matter interaction studies. Collisionless absorption due to the anharmonicity in the self-consistent electrostatic potential of the plasma, known as anharmonic resonance (AHR), has been proposed to be a basic mechanism but a clear experimental demonstration is needed. Here, we show that microstructured targets enhance X-ray emission and the polarization dependence ascribes the enhancement to anharmonic resonance heating. It is found that p-polarized pulses of 5×1017 W/cm2 intensity bring in a 16-fold enhancement in the X-ray emission in the energy range 20-350 keV compared to s-polarized pulses with microstructured targets. This ratio is 2 for the case of polished targets under otherwise identical conditions. Particle-in-cell simulations clearly show that AHR is the key absorption mechanism responsible for this effect.
  •  
5.
  • Dalui, Malay, et al. (författare)
  • Mass selection in laser-plasma ion accelerator on nanostructured surfaces
  • 2017
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • When an intense laser pulse interacts with a solid surface, ions get accelerated in the laser-plasma due to the formation of transient longitudinal electric field along the target normal direction. However, the acceleration is not mass-selective. The possibility of manipulating such ion acceleration scheme to enhance the energy of one ionic species (either proton or carbon) selectively over the other species is investigated experimentally using nanopore targets. For an incident laser intensity of approximately 5×1017 W/cm2, we show that the acceleration is optimal for protons when the pore diameter is about 15-20 nm, while carbon ions are optimally accelerated when the pore diameter is close to 40-50 nm. The observed effect is due to tailoring targetry by the pulse pedestal of the laser prior to the arrival of the main pulse.
  •  
6.
  • Delfin, C, et al. (författare)
  • Influence of laser pulse duration on relativistic channels
  • 2002
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 9:3, s. 937-940
  • Tidskriftsartikel (refereegranskat)abstract
    • A high-power (10 TW) laser is employed to generate relativistic channels in an underdense plasma. The lengths of the channels are measured by imaging the Thomson-scattered light, and the gas densities are determined through the forward Raman scattered light. The laser-pulse parameters are varied and their impact on the channel formation is studied. It is found that increasing the laser pulse duration in many cases produces longer channels, even as this implies reducing the laser peak power. A theoretical discussion is presented, proposing an explanation of the experimental results. (C) 2002 American Institute of Physics.
  •  
7.
  • Desforges, F. G., et al. (författare)
  • Dynamics of ionization-induced electron injection in the high density regime of laser wakefield acceleration
  • 2014
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 21:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The dynamics of ionization-induced electron injection in high density (similar to 1.2 x 10(19) cm(-3)) regime of laser wakefield acceleration is investigated by analyzing the betatron X-ray emission. In such high density operation, the laser normalized vector potential exceeds the injection-thresholds of both ionization-injection and self-injection due to self-focusing. In this regime, direct experimental evidence of early on-set of ionization-induced injection into the plasma wave is given by mapping the X-ray emission zone inside the plasma. Particle-In-Cell simulations show that this early on-set of ionization-induced injection, due to its lower trapping threshold, suppresses the trapping of self-injected electrons. A comparative study of the electron and X-ray properties is performed for both self-injection and ionization-induced injection. An increase of X-ray fluence by at least a factor of two is observed in the case of ionization-induced injection due to increased trapped charge compared to self-injection mechanism. (C) 2014 AIP Publishing LLC.
  •  
8.
  • Do, A., et al. (författare)
  • High spatial resolution and contrast radiography of hydrodynamic instabilities at the National Ignition Facility
  • 2022
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 29:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We are developing techniques for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities at the National Ignition Facility (NIF). In particular, through the improvement of experimental imaging quality, we are progressing toward the study of the turbulent regime of the mixing regions in capsule implosion experiments for inertial confinement fusion, which requires few micrometers resolution. Using 60 NIF beams, a solid shock tube is driven launching a shock wave that crosses the interface between a dense and a light material pre-machined in the target to obtain sinusoidal ripples, which results in RM and RT instabilities that are imaged using the NIF Crystal Backlighter Imager. High-quality images were obtained with a mean resolution of 7 μm and improved contrast. While the obtained resolution does not allow the observation of the smallest scale of the "turbulent"energy spectrum, the generated image encompasses 63% of the total flow energy, a 50% improvement over previous studies, which is observed for the first time a roll-up feature in a high energy density-type RT experiment.
  •  
9.
  • Ferri, Julien, 1990, et al. (författare)
  • Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
  • 2018
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 25
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 Author(s). We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ∼0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
  •  
10.
  • Gahn, C, et al. (författare)
  • Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system
  • 2002
  • Ingår i: Physics of Plasmas. - : AIP Publishing. - 1070-664X .- 1089-7674. ; 9:3, s. 987-999
  • Tidskriftsartikel (refereegranskat)abstract
    • In experiments, the feasibility was demonstrated of generating multi-MeV electrons in a form of a collimated beam utilizing a table-top laser system delivering 200 fs pulses with P-L=1.2 TW and 10 Hz capability. The method uses the process of relativistic self-channeling in a high-density gas jet producing electron densities in the range of 3x10(19)-6x10(20) cm(-3). In a thorough investigation, angularly resolved and absolutely calibrated electron spectra were measured and their dependence on the plasma density, laser intensity, and gas medium was studied. For the optimum electron density of n(e)=2x10(20) cm(-3) the effective temperature of the electron energy distribution and the channel length exhibit a maximum of 5 MeV and 400 mum respectively. The laser-energy to-MeV-electron efficiency is estimated to be 5%. In a second step, utilizing the multi-MeV electron beam anti-particles, namely positrons, were successfully generated in a 2 mm Pb converter. The average intensity of this new source of positrons is estimated to be equivalent to a radioactivity of 2x10(8) Bq and it exhibits a very favorable scaling for higher laser intensities. (C) 2002 American Institute of Physics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy