SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1070 664X OR L773:1089 7674 ;pers:(Eriksson Jacob Dr 1985)"

Sökning: L773:1070 664X OR L773:1089 7674 > Eriksson Jacob Dr 1985

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angioni, C., et al. (författare)
  • Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality
  • 2018
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674 .- 1070-6631 .- 1089-7666. ; 25:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of the change of the mass of hydrogen isotopes on the turbulent particle flux is studied. The trapped electron component of the turbulent particle convection induced by collisionality, which is outward in ion temperature gradient turbulence, increases with decreasing thermal velocity of the isotope. Thereby, the lighter is the isotope, the stronger is the turbulent pinch, and the larger is the predicted density gradient at the null of the particle flux. The passing particle component of the flux increases with decreasing mass of the isotope and can also affect the predicted density gradient. This effect is however subdominant for usual core plasma parameters. The analytical results are confirmed by means of both quasi-linear and nonlinear gyrokinetic simulations, and an estimate of the difference in local density gradient produced by this effect as a function of collisionality has been obtained for typical plasma parameters at mid-radius. Analysis of currently available experimental data from the JET and the ASDEX Upgrade tokamaks does not show any clear and general evidence of inconsistency with this theoretically predicted effect outside the errorbars and also allows the identification of cases providing weak evidence of qualitative consistency.
  •  
2.
  • Saarelma, S., et al. (författare)
  • Self-consistent pedestal prediction for JET-ILW in preparation of the DT campaign
  • 2019
  • Ingår i: Physics of fluids. - : American Institute of Physics (AIP). - 1070-6631 .- 1089-7666 .- 1070-664X .- 1089-7674. ; 26:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The self-consistent core-pedestal prediction model of a combination of EPED1 type pedestal prediction and a simple stiff core transport model is able to predict Type I ELMy (edge localized mode) pedestals of a large JET-ILW (ITER-like wall) database at the similar accuracy as is obtained when the experimental global plasma beta is used as input. The neutral penetration model [R. J. Groebner et al., Phys. Plasmas 9, 2134 (2002)] with corrections that take into account variations due to gas fueling and plasma triangularity is able to predict the pedestal density with an average error of 15%. The prediction of the pedestal pressure in hydrogen plasma that has higher core heat diffusivity compared to a deuterium plasma with similar heating and fueling agrees with the experiment when the isotope effect on the stability, the increased diffusivity, and outward radial shift of the pedestal are included in the prediction. However, the neutral penetration model that successfully predicts the deuterium pedestal densities fails to predict the isotope effect on the pedestal density in hydrogen plasmas.
  •  
3.
  • Angioni, C., et al. (författare)
  • The impact of poloidal asymmetries on tungsten transport in the core of JET H-mode plasmas
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent progress in the understanding and prediction of the tungsten behaviour in the core of JET H-mode plasmas with ITER-like wall is presented. Particular emphasis is given to the impact of poloidal asymmetries of the impurity density. In particular, it is shown that the predicted reduction of temperature screening induced by the presence of low field side localization of the tungsten density produced by the centrifugal force is consistent with the observed tungsten behaviour in a JET discharge in H-mode baseline scenario. This provides first evidence of the role of poloidal asymmetries in reducing the strength of temperature screening. The main differences between plasma parameters in JET baseline and hybrid scenario discharges which affect the impact of poloidally asymmetric density on the tungsten radial transport are identified. This allows the conditions by which tungsten accumulation can be avoided to be more precisely defined.
  •  
4.
  • Breton, S., et al. (författare)
  • High Z neoclassical transport : Application and limitation of analytical formulae for modelling JET experimental parameters
  • 2018
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schluter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.
  •  
5.
  • Conroy, Sean, et al. (författare)
  • The global build-up to intrinsic edge localized mode bursts seen in divertor full flux loops in JET
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:7
  • Tidskriftsartikel (refereegranskat)abstract
    • A global signature of the build-up to an intrinsic edge localized mode (ELM) is found in the temporal analytic phase of signals measured in full flux azimuthal loops in the divertor region of JET. Toroidally integrating, full flux loop signals provide a global measurement proportional to the voltage induced by changes in poloidal magnetic flux; they are electromagnetically induced by the dynamics of spatially integrated current density. We perform direct time-domain analysis of the high time-resolution full flux loop signals VLD2 and VLD3. We analyze plasmas where a steady H-mode is sustained over several seconds during which all the observed ELMs are intrinsic; there is no deliberate intent to pace the ELMing process by external means. ELM occurrence times are determined from the Be II emission at the divertor. We previously [ Chapman et al., Phys. Plasmas 21, 062302 (2014); Chapman et al., in 41st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2014), Vol. 38F, ISBN 2-914771-90-8] found that the occurrence times of intrinsic ELMs correlate with specific temporal analytic phases of the VLD2 and VLD3 signals. Here, we investigate how the VLD2 and VLD3 temporal analytic phases vary with time in advance of the ELM occurrence time. We identify a build-up to the ELM in which the VLD2 and VLD3 signals progressively align to the temporal analytic phase at which ELMs preferentially occur, on a similar to 2 - 5ms timescale. At the same time, the VLD2 and VLD3 signals become temporally phase synchronized with each other, consistent with the emergence of coherent global dynamics in the integrated current density. In a plasma that remains close to a global magnetic equilibrium, this can reflect bulk displacement or motion of the plasma. This build-up signature to an intrinsic ELM can be extracted from a time interval of data that does not extend beyond the ELM occurrence time, so that these full flux loop signals could assist in ELM prediction or mitigation.
  •  
6.
  • Di Siena, A., et al. (författare)
  • Non-Maxwellian fast particle effects in gyrokinetic GENE simulations
  • 2018
  • Ingår i: Physics of Plasmas. - : American Institute of Physics Inc.. - 1070-664X .- 1089-7674. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Fast ions have recently been found to significantly impact and partially suppress plasma turbulence both in experimental and numerical studies in a number of scenarios. Understanding the underlying physics and identifying the range of their beneficial effect is an essential task for future fusion reactors, where highly energetic ions are generated through fusion reactions and external heating schemes. However, in many of the gyrokinetic codes fast ions are, for simplicity, treated as equivalent-Maxwellian-distributed particle species, although it is well known that to rigorously model highly non-thermalised particles, a non-Maxwellian background distribution function is needed. To study the impact of this assumption, the gyrokinetic code GENE has recently been extended to support arbitrary background distribution functions which might be either analytical, e.g., slowing down and bi-Maxwellian, or obtained from numerical fast ion models. A particular JET plasma with strong fast-ion related turbulence suppression is revised with these new code capabilities both with linear and nonlinear gyrokinetic simulations. It appears that the fast ion stabilization tends to be less strong but still substantial with more realistic distributions, and this improves the quantitative power balance agreement with experiments. 
  •  
7.
  • Fil, A., et al. (författare)
  • Three-dimensional non-linear magnetohydrodynamic modeling of massive gas injection triggered disruptions in JET
  • 2015
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 22:6
  • Tidskriftsartikel (refereegranskat)abstract
    • JOREK 3D non-linear MHD simulations of a D-2 Massive Gas Injection (MGI) triggered disruption in JET are presented and compared in detail to experimental data. The MGI creates an overdensity that rapidly expands in the direction parallel to the magnetic field. It also causes the growth of magnetic islands (m/n = 2/1 and 3/2 mainly) and seeds the 1/1 internal kink mode. O-points of all island chains (including 1/1) are located in front of the MGI, consistently with experimental observations. A burst of MHD activity and a peak in plasma current take place at the same time as in the experiment. However, the magnitude of these two effects is much smaller than in the experiment. The simulated radiation is also much below the experimental level. As a consequence, the thermal quench is not fully reproduced. Directions for progress are identified. Radiation from impurities is a good candidate.
  •  
8.
  • Hellesen, Carl, 1980-, et al. (författare)
  • Axisymmetric global Alfven eigenmodes within the ellipticity-induced frequency gap in the Joint European Torus
  • 2017
  • Ingår i: Physics of Plasmas. - : AMER INST PHYSICS. - 1070-664X .- 1089-7674. ; 24:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfven eigenmodes (AEs) with toroidal mode number n = 0 (i.e., axisymmetric) have been observed in the ellipticity-induced frequency range in the Joint European Torus. The axisymmetric modes are of interest because they can be used to diagnose fast particle energy distributions at the mode location. The modes were identified as global Alfven eigenmodes (GAEs), with the ellipticity of the plasma cross-section preventing strong continuum damping of the modes. The MHD codes CSCAS, MISHKA, and AEGIS were used to compute the n = 0 Alfven continuum, eigenmode structure, and continuum damping. For zero ellipticity, a single mode exists at a frequency below the Alfven continuum branch. This mode has two dominant poloidal harmonics with poloidal mode numbers m = +/- 1 that have the same polarity; therefore, it is an even mode. For finite ellipticity, the continuum branch splits into two branches and the single GAE splits into two modes. An even mode exists below the minimum of the top continuum branch, and the frequency of this mode coincides with the experimentally observed AE frequency. The other mode is found below the lower continuum branch with opposite signs between the two poloidal harmonics (an odd mode structure). This mode was not excited in our experiment. Analytical theory for the n = 0 GAE in an elliptical cylinder shows the n = 0 Alfven continuum agrees with the numerical modelling.
  •  
9.
  • Kazakov, Ye O., et al. (författare)
  • Physics and applications of three-ion ICRF scenarios for fusion research
  • 2021
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 28:2
  • Forskningsöversikt (refereegranskat)abstract
    • This paper summarizes the physical principles behind the novel three-ion scenarios using radio frequency waves in the ion cyclotron range of frequencies (ICRF). We discuss how to transform mode conversion electron heating into a new flexible ICRF technique for ion cyclotron heating and fast-ion generation in multi-ion species plasmas. The theoretical section provides practical recipes for selecting the plasma composition to realize three-ion ICRF scenarios, including two equivalent possibilities for the choice of resonant absorbers that have been identified. The theoretical findings have been convincingly confirmed by the proof-of-principle experiments in mixed H–D plasmas on the Alcator C-Mod and JET tokamaks, using thermal 3He and fast D ions from neutral beam injection as resonant absorbers. Since 2018, significant progress has been made on the ASDEX Upgrade and JET tokamaks in H–4He and H–D plasmas, guided by the ITER needs. Furthermore, the scenario was also successfully applied in JET D–3He plasmas as a technique to generate fusion-born alpha particles and study effects of fast ions on plasma confinement under ITER-relevant plasma heating conditions. Tuned for the central deposition of ICRF power in a small region in the plasma core of large devices such as JET, three-ion ICRF scenarios are efficient in generating large populations of passing fast ions and modifying the q-profile. Recent experimental and modeling developments have expanded the use of three-ion scenarios from dedicated ICRF studies to a flexible tool with a broad range of different applications in fusion research.
  •  
10.
  • Lanctot, M. J., et al. (författare)
  • Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
  • 2017
  • Ingår i: Physics of Plasmas. - : American Institute of Physics (AIP). - 1070-664X .- 1089-7674. ; 24:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q similar to 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the "overlap" field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the "critical overlap fields" at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m> nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Together, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy