SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1078 0432 ;pers:(Karlsson Mats)"

Sökning: L773:1078 0432 > Karlsson Mats

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Botling, Johan, et al. (författare)
  • Biomarker Discovery in Non-Small Cell Lung Cancer : Integrating Gene Expression Profiling, Meta-analysis, and Tissue Microarray Validation
  • 2013
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 19:1, s. 194-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Global gene expression profiling has been widely used in lung cancer research to identify clinically relevant molecular subtypes as well as to predict prognosis and therapy response. So far, the value of these multigene signatures in clinical practice is unclear, and the biologic importance of individual genes is difficult to assess, as the published signatures virtually do not overlap.Experimental Design: Here, we describe a novel single institute cohort, including 196 non-small lung cancers (NSCLC) with clinical information and long-term follow-up. Gene expression array data were used as a training set to screen for single genes with prognostic impact. The top 450 probe sets identified using a univariate Cox regression model (significance level P < 0.01) were tested in a meta-analysis including five publicly available independent lung cancer cohorts (n = 860).Results: The meta-analysis revealed 14 genes that were significantly associated with survival (P < 0.001) with a false discovery rate < 1%. The prognostic impact of one of these genes, the cell adhesion molecule 1 (CADM1), was confirmed by use of immunohistochemistry on tissue microarrays from 2 independent NSCLC cohorts, altogether including 617 NSCLC samples. Low CADM1 protein expression was significantly associated with shorter survival, with particular influence in the adenocarcinoma patient subgroup.Conclusions: Using a novel NSCLC cohort together with a meta-analysis validation approach, we have identified a set of single genes with independent prognostic impact. One of these genes, CADM1, was further established as an immunohistochemical marker with a potential application in clinical diagnostics. Clin Cancer Res; 19(1); 194-204. (c) 2012 AACR.
  •  
2.
  • Grisic, Ana-Marija, et al. (författare)
  • Model-Based Characterization of the Bidirectional Interaction Between Pharmacokinetics and Tumor Growth Dynamics in Patients with Metastatic Merkel Cell Carcinoma Treated with Avelumab
  • 2022
  • Ingår i: Clinical Cancer Research. - : American Association for Cancer Research (AACR). - 1078-0432 .- 1557-3265. ; 28:7, s. 1363-1371
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Empirical time-varying clearance models have been reported for several immune checkpoint inhibitors, including avelumab (anti-programmed death ligand 1). To investigate the exposure response relationship for avelumab, we explored semimechanistic pharmacokinetic (PK)-tumor growth dynamics (TGD) models.Patients and Methods: Plasma PK data were pooled from three phase I and II trials (JAVELIN Merkel 200, JAVELIN Solid Tumor, and JAVELIN Solid Tumor JPN); tumor size (TS) data were collected from patients with metastatic Merkel cell carcinoma (mMCC) enrolled in JAVELIN Merkel 200. A PK model was developed first, followed by TGD modeling to investigate interactions between avelumab exposure and TGD. A PK-TGD feedback loop was evaluated with simultaneous fitting of the PK and TGD models.Results: In total, 1,835 PK observations and 338 TS observations were collected from 147 patients. In the final PK-TGD model, which included the bidirectional relationship between PK and TGD, avelumab PK was described by a two-compartment model with a positive association between clearance and longitudinal TS, with no additional empirical time-varying clearance identified. TGD was described by first-order tumor growth/shrinkage rates, with the tumor shrinkage rate decreasing exponentially over time; the exponential time-decay constant decreased with increasing drug concentration, representing the treatment effect through tumor shrinkage inhibition.Conclusions: We developed a TGD model that mechanistically captures the prevention of loss of antitumor immunity (i.e., T-cell suppression in the tumor microenvironment) by avelumab, and a bidirectional interaction between PK and TGD in patients with mMCC treated with avelumab, thus mechanistically describing previously reported time variance of avelumab elimination.
  •  
3.
  • Joerger, Markus, et al. (författare)
  • Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients : a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group.
  • 2007
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 13:21, s. 6410-6418
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Paclitaxel and carboplatin are frequently used in advanced ovarian cancer following cytoreductive surgery. Threshold models have been used to predict paclitaxel pharmacokinetic-pharmacodynamics, whereas the time above paclitaxel plasma concentration of 0.05 to 0.2 μmol/L (tC > 0.05−0.2) predicts neutropenia. The objective of this study was to build a population pharmacokinetic-pharmacodynamic model of paclitaxel/carboplatin in ovarian cancer patients. Experimental Design: One hundred thirty-nine ovarian cancer patients received paclitaxel (175 mg/m2) over 3 h followed by carboplatin area under the concentration-time curve 5 mg/mL*min over 30 min. Plasma concentration-time data were measured, and data were processed using nonlinear mixed-effect modeling. Semiphysiologic models with linear or sigmoidal maximum response and threshold models were adapted to the data. Results: One hundred five patients had complete pharmacokinetic and toxicity data. In 34 patients with measurable disease, objective response rate was 76%. Neutrophil and thrombocyte counts were adequately described by an inhibitory linear response model. Paclitaxel tC > 0.05 was significantly higher in patients with a complete (91.8 h) or partial (76.3 h) response compared with patients with progressive disease (31.5 h; P = 0.02 and 0.05, respectively). Patients with paclitaxel tC > 0.05 > 61.4 h (mean value) had a longer time to disease progression compared with patients with paclitaxel tC > 0.05 < 61.4 h (89.0 versus 61.9 weeks; P = 0.05). Paclitaxel tC > 0.05 was a good predictor for severe neutropenia (P = 0.01), whereas carboplatin exposure (Cmax and area under the concentration-time curve) was the best predictor for thrombocytopenia (P < 10−4). Conclusions: In this group of patients, paclitaxel tC > 0.05 is a good predictive marker for severe neutropenia and clinical outcome, whereas carboplatin exposure is a good predictive marker for thrombocytopenia.
  •  
4.
  • Kloft, Charlotte, et al. (författare)
  • Population pharmacokinetic-pharmacodynamic model for neutropenia with patient subgroup identification : comparison across anticancer drugs
  • 2006
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 12:18, s. 5481-5490
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Cancer chemotherapy, although based on body surface area, often causes unpredictable myelosuppression, especially severe neutropenia. The aim of this study was to evaluate qualitatively and quantitatively the influence of patient-specific characteristics on the neutrophil concentration-time course, to identify patient subgroups, and to compare covariates on system-related pharmacodynamic variable between drugs. Experimental Design: Drug and neutrophil concentration, demographic, and clinical chemistry data of several trials with docetaxel (637 patients), paclitaxel (45 patients), etoposide (71 patients), or topotecan (191 patients) were included in the covariate analysis of a physiology-based pharmacokinetic-pharmacodynamic neutropenia model. Comparisons of covariate relations across drugs were made. Results: A population model incorporating four to five relevant patient factors for each drug to explain variability in the degree and duration of neutropenia has been developed. Sex, previous anticancer therapy, performance status, height, binding partners, or liver enzymes influenced system-related variables and alpha(1)-acid glycoprotein, albumin, bilirubin, concomitant cytotoxic agents, or administration route changed drug-specific variables. Overall, female and pretreated patients had a lower baseline neutrophil concentration. Across-drug comparison revealed that several covariates (e.g., age) had minor (clinically irrelevant) influences but consistently shifted the pharmacodynamic variable in the same direction. Conclusions: These mechanistic models, including patient characteristics that influence drug-specific parameters, form the rationale basis for more tailored dosing of individual patients or subgroups to minimize the risk of infection and thus might contribute to a more successful therapy. In addition, nonsignificant or clinically irrelevant relations on system-related parameters suggest that these covariates could be negligible in clinical trails and daily use.
  •  
5.
  • Netterberg, Ida, et al. (författare)
  • Comparing Circulating Tumor Cell Counts with Dynamic Tumor Size Changes as Predictor of Overall Survival : A Quantitative Modeling Framework
  • 2020
  • Ingår i: Clinical Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 1078-0432 .- 1557-3265. ; 26:18, s. 4892-4900
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Quantitative relationships between treatment-induced changes in tumor size and circulating tumor cell (CTC) counts, and their links to overall survival (OS), are lacking. We present a population modeling framework identifying and quantifying such relationships, based on longitudinal data collected in patients with metastatic colorectal cancer (mCRC) to evaluate the value of tumor size and CTC counts as predictors of OS. Experimental Design: A pharmacometric approach (i.e., population pharmacodynamic modeling) was used to characterize the changes in tumor size and CTC count and evaluate them as predictors of OS in 451 patients with mCRC treated with chemotherapy and targeted therapy in a prospectively randomized phase III study (CAIRO2). Results: A tumor size model of tumor quiescence and drug resistance was used to characterize the tumor size time-course, and was, in addition to the total normalized dose (i.e., of all administered drugs) in a given cycle, related to the CTC counts through a negative binomial model (CTC model). Tumor size changes did not contribute additional predictive value when themean CTC count was a predictor of OS. Treatment reduced the typical mean count from 1.43 to 0.477 (HR = 3.94). The modeling framework was applied to explore whether dose modifications (increased and reduced) would result in a CTC count below 1/7.5 mL after 1 to 2 weeks of treatment. Conclusions: Time-varying CTC counts can be useful for early predicting OS in patients with mCRC, and may therefore have potential for model-based treatment individualization. Although tumor size was connected to CTC, its link to OS was weaker.
  •  
6.
  • Trame, Mirjam N, et al. (författare)
  • Population pharmacokinetics of busulfan in children : increased evidence for body surface area and allometric body weight dosing of busulfan in children.
  • 2011
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 17:21, s. 6867-6877
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To evaluate the best method for dosing busulfan in children, we retrospectively analyzed two different data sets from three different dosing regimens by means of population pharmacokinetics using NONMEM. EXPERIMENTAL DESIGN: The development data set consisted of plasma samples from 94 children, in the age range of 0.4 to 18.8 years, receiving either oral or intravenous busulfan. The external model evaluation data set comprised 24 children, in the age range of 0.1 to 18.9 years, who belonged to the once-daily intravenous busulfan dosing regimen. A one-compartment model with first-order absorption using body surface area (BSA) or allometric body weight (BW) as covariate on clearance (CL) and BW as covariate on volume of distribution (V) were used to describe the results sufficiently. In addition to interindividual variability on all pharmacokinetic parameters, interoccasion variability was included for CL and V. RESULTS: CL values in the present study did not reflect the shape of the CL versus weight curve reported in previous investigations. By external model evaluation, we were able to confirm these findings. Furthermore, bioavailability was calculated to be between 93% and 99% for the development data set. On the basis of the final models, we simulated two dosing schemes according to allometric BW and BSA showing that we estimated to include about 30% more patients into the proposed therapeutic area under the curve (AUC) range of 900 to 1,500 μM*min and could, furthermore, achieve a reduction in the AUC variability when dosed according to the labeled European Medicines Agency (EMA) dosing recommendation. CONCLUSION: We recommend a BSA or an allometric BW dosing regimen for individualizing busulfan therapy in children to reduce variability in busulfan exposure and to improve safety and efficacy of busulfan treatment.
  •  
7.
  •  
8.
  • van Erp, Nielka P, et al. (författare)
  • Influence of CYP3A4 Inhibition on the Steady-State Pharmacokinetics of Imatinib
  • 2007
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 13:24, s. 7394-7400
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To evaluate the effects of ritonavir, a potent inhibitor of CYP3A4, on the steady-state pharmacokinetics of imatinib. Experimental Design: Imatinib pharmacokinetics were evaluated in cancer patients receiving the drug for at least 2 months, after which ritonavir (600 mg) was administered daily for 3 days. Samples were obtained on the day before ritonavir (day 1) and on the third day (day 4).The in vitro metabolism of imatinib with or without ritonavir and the effect of imatinib on 1-OH-midazolam formation rate, a probe for CYP3A4 activity, were evaluated with human CYP3A4 and pooled liver microsomes. Results: In 11 evaluable patients, the geometric mean (95% confidence interval) area under the curve of imatinib on days 1 and 4 were 42.6 (33.0-54.9) mu g.h/mL and 41.2 (32.1-53.1) mu g.h/mL, respectively (P = 0.65). A population analysis done in NONMEM with a time-dependent covariate confirmed that ritonavir did not influence the clearance or bioavailability of imatinib. In vitro, imatinib was metabolized to the active metabolite CGP74588 by CYP3A4 and CYP3A5 and, to a lesser extent, by CYP2D6. Ritonavir (1 mu mol/L) completely inhibited CYP3A4-mediated metabolism of imatinib to CGP74588 but inhibited metabolism in microsomes by only 50%. Imatinib significantly inhibited CYP3A4 activity in vitro. Conclusion: At steady state, imatinib is insensitive to potent CYP3A4 inhibition and relies on alternate elimination pathways. For agents with complex elimination pathways that involve autoinhibition, interaction studies that are done after a single dose may not be applicable when drugs are administered chronically.
  •  
9.
  •  
10.
  • Hovstadius, Peter, et al. (författare)
  • A Phase I Study of CHS 828 in Patients with Solid Tumor Malignancy
  • 2002
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 8:9, s. 2843-2850
  • Tidskriftsartikel (refereegranskat)abstract
    • CHS 828 is a cyanoguanidine, which has demonstrated potent antitumor activity in preclinical tumor models. The activity of CHS 828 in vitro showed only low to moderate correlation to other antineoplastic agents suggesting a unique mechanism of action. Ten females and 6 males (median age 58 years) with solid tumors refractory to standard therapy were included in this Phase I study. The study drug was administered to fasting patients as a single oral dose on days 1–5 of each treatment cycle. Patients received one to six cycles of treatment. The doses ranged from 30 mg to 200 mg (total dose within a cycle). Hematological toxicity was generally mild and dominated by transient thrombocytopenia and lymphocytopenia. Nonhematological toxicity most frequently consisted of nausea, vomiting, diarrhea, fatigue, and localized genital mucositis. The dose-limiting toxicities were thrombocytopenia, thrombosis, esophagitis, diarrhea, and constipation. The recommended Phase II dose of CHS 828 was 20 mg once daily for 5 days in cycles of 28 days duration. The extent of systemic exposure of CHS 828 across patients was approximately dose proportional. The time at which the highest drug concentration occurs was 2.2 ± 1.3 h and half-life was 2.1 ± 0.52 h (mean ± SD). Large intra- and interindividual variation in dose level-adjusted maximum plasma concentration and the area under the curve from time 0 h to infinity were observed. There was an apparent inverse relationship between systemic exposure of CHS 828, and thrombocyte and lymphocyte nadir levels. No objective tumor responses were observed, and 7 patients showed stable disease after two courses of therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy