SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1088 9051 OR L773:1549 5469 ;lar1:(ki)"

Search: L773:1088 9051 OR L773:1549 5469 > Karolinska Institutet

  • Result 1-10 of 66
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, G, et al. (author)
  • Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation
  • 2016
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 26:10, s. 1342-1354
  • Journal article (peer-reviewed)abstract
    • Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we “digitalized” XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.
  •  
2.
  • de Hoon, M, et al. (author)
  • Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs
  • 2022
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:9, s. 1727-1735
  • Journal article (peer-reviewed)abstract
    • In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3′ ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.
  •  
3.
  • Edmonson, MN, et al. (author)
  • Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE): a cloud-based platform for curating and classifying germline variants
  • 2019
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 29:9, s. 1555-1565
  • Journal article (peer-reviewed)abstract
    • Variant interpretation in the era of massively parallel sequencing is challenging. Although many resources and guidelines are available to assist with this task, few integrated end-to-end tools exist. Here, we present the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE), a web- and cloud-based platform for annotation, identification, and classification of variations in known or putative disease genes. Starting from a set of variants in variant call format (VCF), variants are annotated, ranked by putative pathogenicity, and presented for formal classification using a decision-support interface based on published guidelines from the American College of Medical Genetics and Genomics (ACMG). The system can accept files containing millions of variants and handle single-nucleotide variants (SNVs), simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex substitutions. PeCanPIE has been applied to classify variant pathogenicity in cancer predisposition genes in two large-scale investigations involving >4000 pediatric cancer patients and serves as a repository for the expert-reviewed results. PeCanPIE was originally developed for pediatric cancer but can be easily extended for use for nonpediatric cancers and noncancer genetic diseases. Although PeCanPIE's web-based interface was designed to be accessible to non-bioinformaticians, its back-end pipelines may also be run independently on the cloud, facilitating direct integration and broader adoption. PeCanPIE is publicly available and free for research use.
  •  
4.
  • Ehrenberg, M., et al. (author)
  • Systems biology is taking off
  • 2003
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 13, s. 2475-2484
  • Journal article (peer-reviewed)
  •  
5.
  • Fabbri, M, et al. (author)
  • Decrypting noncoding RNA interactions, structures, and functional networks
  • 2019
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 29:9, s. 1377-1388
  • Journal article (peer-reviewed)abstract
    • The world of noncoding RNAs (ncRNAs) is composed of an enormous and growing number of transcripts, ranging in length from tens of bases to tens of kilobases, involved in all biological processes and altered in expression and/or function in many types of human disorders. The premise of this review is the concept that ncRNAs, like many large proteins, have a multidomain architecture that organizes them spatially and functionally. As ncRNAs are beginning to be imprecisely classified into functional families, we review here how their structural properties might inform their functions with focus on structural architecture–function relationships. We will describe the properties of “interactor elements” (IEs) involved in direct physical interaction with nucleic acids, proteins, or lipids and of “structural elements” (SEs) directing their wiring within the “ncRNA interactor networks” through the emergence of secondary and/or tertiary structures. We suggest that spectrums of “letters” (ncRNA elements) are assembled into “words” (ncRNA domains) that are further organized into “phrases” (complete ncRNA structures) with functional meaning (signaling output) through complex “sentences” (the ncRNA interactor networks). This semiotic analogy can guide the exploitation of ncRNAs as new therapeutic targets through the development of IE-blockers and/or SE-lockers that will change the interactor partners’ spectrum of proteins, RNAs, DNAs, or lipids and consequently influence disease phenotypes.
  •  
6.
  • Gandin, V, et al. (author)
  • nanoCAGE reveals 5' UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs
  • 2016
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 26:5, s. 636-648
  • Journal article (peer-reviewed)abstract
    • The diversity of MTOR-regulated mRNA translation remains unresolved. Whereas ribosome-profiling suggested that MTOR almost exclusively stimulates translation of the TOP (terminal oligopyrimidine motif) and TOP-like mRNAs, polysome-profiling indicated that MTOR also modulates translation of mRNAs without the 5′ TOP motif (non-TOP mRNAs). We demonstrate that in ribosome-profiling studies, detection of MTOR-dependent changes in non-TOP mRNA translation was obscured by low sensitivity and methodology biases. Transcription start site profiling using nano-cap analysis of gene expression (nanoCAGE) revealed that not only do many MTOR-sensitive mRNAs lack the 5′ TOP motif but that 5′ UTR features distinguish two functionally and translationally distinct subsets of MTOR-sensitive mRNAs: (1) mRNAs with short 5′ UTRs enriched for mitochondrial functions, which require EIF4E but are less EIF4A1-sensitive; and (2) long 5′ UTR mRNAs encoding proliferation- and survival-promoting proteins, which are both EIF4E- and EIF4A1-sensitive. Selective inhibition of translation of mRNAs harboring long 5′ UTRs via EIF4A1 suppression leads to sustained expression of proteins involved in respiration but concomitant loss of those protecting mitochondrial structural integrity, resulting in apoptosis. Conversely, simultaneous suppression of translation of both long and short 5′ UTR mRNAs by MTOR inhibitors results in metabolic dormancy and a predominantly cytostatic effect. Thus, 5′ UTR features define different modes of MTOR-sensitive translation of functionally distinct subsets of mRNAs, which may explain the diverse impact of MTOR and EIF4A inhibitors on neoplastic cells.
  •  
7.
  • Gao, W, et al. (author)
  • Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons
  • 2022
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:1, s. 97-110
  • Journal article (peer-reviewed)abstract
    • The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robustness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons. This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.
  •  
8.
  • Gao, W, et al. (author)
  • Cell type-specific analysis by single-cell profiling identifies a stable mammalian tRNA-mRNA interface and increased translation efficiency in neurons
  • 2022
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:1, s. 97-110
  • Journal article (peer-reviewed)abstract
    • The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robustness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons. This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.
  •  
9.
  • Geng, KY, et al. (author)
  • Target-enriched nanopore sequencing and de novo assembly reveals co-occurrences of complex on-target genomic rearrangements induced by CRISPR-Cas9 in human cells
  • 2022
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 32:10, s. 1876-1891
  • Journal article (peer-reviewed)abstract
    • The CRISPR-Cas9 system is widely used to permanently delete genomic regions via dual guide RNAs. Genomic rearrangements induced by CRISPR-Cas9 can occur, but continuous technical developments make it possible to characterize complex on-target effects. We combined an innovative droplet-based target enrichment approach with long-read sequencing and coupled it to a customized de novo sequence assembly. This approach enabled us to dissect the sequence content at kilobase scale within an on-target genomic locus. We here describe extensive genomic disruptions by Cas9, involving the allelic co-occurrence of a genomic duplication and inversion of the target region, as well as integrations of exogenous DNA and clustered interchromosomal DNA fragment rearrangements. Furthermore, we found that these genomic alterations led to functional aberrant DNA fragments and can alter cell proliferation. Our findings broaden the consequential spectrum of the Cas9 deletion system, reinforce the necessity of meticulous genomic validations, and introduce a data-driven workflow enabling detailed dissection of the on-target sequence content with superior resolution.
  •  
10.
  • Hagey, Daniel W., et al. (author)
  • Distinct transcription factor complexes act on a permissive chromatin landscape to establish regionalized gene expression in CNS stem cells
  • 2016
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 26:7, s. 908-917
  • Journal article (peer-reviewed)abstract
    • Spatially distinct gene expression profiles in neural stem cells (NSCs) are a prerequisite to the formation of neuronal diversity, but how these arise from the regulatory interactions between chromatin accessibility and transcription factor activity has remained unclear. Here, we demonstrate that, despite their distinct gene expression profiles, NSCs of the mouse cortex and spinal cord share the majority of their DNase I hypersensitive sites (DHSs). Regardless of this similarity, domain-specific gene expression is highly correlated with the relative accessibility of associated DHSs, as determined by sequence read density. Notably, the binding pattern of the general NSC transcription factor SOX2 is also largely cell type specific and coincides with an enrichment of LHX2 motifs in the cortex and HOXA9 motifs in the spinal cord. Interestingly, in a zebrafish reporter gene system, these motifs were critical determinants of patterned gene expression along the rostral-caudal axis. Our findings establish a predictive model for patterned NSC gene expression, whereby domain-specific expression of LHX2 and HOX proteins act on their target motifs within commonly accessible cis-regulatory regions to specify SOX2 binding. In turn, this binding correlates strongly with these DHSs relative accessibility-a robust predictor of neighboring gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 66

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view