SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1091 6490 ;pers:(Berggren Magnus)"

Sökning: L773:1091 6490 > Berggren Magnus

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdollahi Sani, Negar, et al. (författare)
  • All-printed diode operating at 1.6 GHz
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:33, s. 11943-11948
  • Tidskriftsartikel (refereegranskat)abstract
    • Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.
  •  
2.
  • Jonsson, Amanda, et al. (författare)
  • Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:34, s. 9440-9445
  • Tidskriftsartikel (refereegranskat)abstract
    • Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional “neural pixel” creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents.
  •  
3.
  • Kergoat, Loig, et al. (författare)
  • Tuning the threshold voltage in electrolyte-gated organic field-effect transistors
  • 2012
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 109:22, s. 8394-8399
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-voltage organic field-effect transistors (OFETs) promise for low power consumption logic circuits. To enhance the efficiency of the logic circuits, the control of the threshold voltage of the transistors are based on is crucial. We report the systematic control of the threshold voltage of electrolyte-gated OFETs by using various gate metals. The influence of the work function of the metal is investigated in metal-electrolyte-organic semiconductor diodes and electrolyte-gated OFETs. A good correlation is found between the flat-band potential and the threshold voltage. The possibility to tune the threshold voltage over half the potential range applied and to obtain depletion-like (positive threshold voltage) and enhancement (negative threshold voltage) transistors is of great interest when integrating these transistors in logic circuits. The combination of a depletion-like and enhancement transistor leads to a clear improvement of the noise margins in depleted-load unipolar inverters.
  •  
4.
  • Laiho, Ari, et al. (författare)
  • Controlling the dimensionality of charge transport in organic thin-film transistors
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 108:37, s. 15069-15073
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups.
  •  
5.
  • Oikonomou, Vasileios, et al. (författare)
  • eSoil : A low-power bioelectronic growth scaffold that enhances crop seedling growth
  • 2024
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 121:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO-3more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.
  •  
6.
  • Poxson, David, et al. (författare)
  • Regulating plant physiology with organic electronics
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:18, s. 4597-4602
  • Tidskriftsartikel (refereegranskat)abstract
    • The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatio-temporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.
  •  
7.
  • Stavrinidou, Eleni, et al. (författare)
  • In vivo polymerization and manufacturing of wires and supercapacitors in plants
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:11, s. 2807-2812
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant’s structure acts as a physical template, whereas the plant’s biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant’s natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization
  •  
8.
  • Tran, Van Chinh, et al. (författare)
  • Electrical current modulation in wood electrochemical transistor
  • 2023
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 120:118
  • Tidskriftsartikel (refereegranskat)abstract
    • The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)–polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm−1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.
  •  
9.
  • Tybrandt, Klas, et al. (författare)
  • Ion bipolar junction transistors
  • 2010
  • Ingår i: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - : National Academy of Sciences; 1999. - 0027-8424 .- 1091-6490. ; 107:22, s. 9929-9932
  • Tidskriftsartikel (refereegranskat)abstract
    • Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.
  •  
10.
  • Wang, Suhao, et al. (författare)
  • Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:34, s. 10599-10604
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the p-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (10)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Crispin, Xavier (4)
Stavrinidou, Eleni (2)
Simon, Daniel (2)
Gabrielsson, Roger (2)
Kergoat, Loig (2)
visa fler...
Fahlman, Mats (1)
Fabiano, Simone (1)
Abdollahi Sani, Nega ... (1)
Engquist, Isak (1)
Robertsson, Mats (1)
Cooper, Philip (1)
Wang, Xin (1)
Svensson, Magnus (1)
Andersson Ersman, Pe ... (1)
Norberg, Petronella (1)
Nilsson, Marie (1)
Nilsson, David (1)
Liu, Xianjie (1)
Hesselbom, Hjalmar (1)
Akesso, Laurent (1)
Gustafsson, Goran (1)
Poxson, David (1)
Tybrandt, Klas (1)
Berggren, Magnus, Pr ... (1)
Williamson, Adam (1)
Ljung, Karin (1)
Forchheimer, Robert (1)
Piro, Benoit (1)
Richter-Dahlfors, Ag ... (1)
Berglund, Lars, 1956 ... (1)
Rivnay, Jonathan (1)
Wang, Suhao (1)
Li, Lengwan (1)
Zabihipour, Marzieh (1)
Bech, Martin (1)
Zhou, Qi (1)
Elgland, Mathias (1)
Karady, Michal (1)
Robert, Stephanie (1)
Jonsson, Amanda (1)
Bernard, Christophe (1)
Khodagholy, Dion (1)
Malliaras, George G. (1)
Oikonomou, Vasileios (1)
Huerta, Miriam (1)
Nilsson, K. Peter R. (1)
Lim, Hyungwoo (1)
Laiho, Ari (1)
Gustavsson, Anna (1)
visa färre...
Lärosäte
Linköpings universitet (10)
Sveriges Lantbruksuniversitet (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Lunds universitet (1)
RISE (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Teknik (6)
Naturvetenskap (4)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy