SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1091 6490 ;pers:(Lindvall Olle)"

Sökning: L773:1091 6490 > Lindvall Olle

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bengzon, Johan, et al. (författare)
  • Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures
  • 1997
  • Ingår i: Proceedings of the National Academy of Sciences. - 1091-6490. ; 94:19, s. 10432-10437
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal apoptosis was observed in the rat dentate gyrus in two experimental models of human limbic epilepsy. Five hours after one hippocampal kindling stimulation, a marked increase of in situ terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL) of fragmented DNA was observed in nuclei located within and on the hilar border of the granule cell layer and in the polymorphic region. Forty kindling stimulations with 5-min interval produced higher numbers of labeled nuclei compared with one stimulation. The increase of TUNEL-positive nuclei was prevented by the protein synthesis inhibitor cycloheximide but not affected by the N-methyl-D-aspartate receptor antagonist MK-801. Kainic acid-induced seizures lead to a pattern of labeling in the hippocampal formation identical to that evoked by kindling. A large proportion of cells displaying TUNEL-positive nuclei was double-labeled by the neuron-specific antigen NeuN, demonstrating the neuronal identity of apoptotic cells. Either 1 or 40 kindling stimulations also gave rise to a marked increase of the number of cells double-labeled with the mitotic marker bromodeoxyuridine and NeuN in the subgranular zone and on the hilar border of the dentate granule cell layer. The present data show that single and intermittent, brief seizures induce both apoptotic death and proliferation of dentate gyrus neurons. We hypothesize that these processes, occurring early during epileptogenesis, are primary events in the development of hippocampal pathology in animals and possibly also in patients suffering from temporal lobe epilepsy.
  •  
2.
  • Ekdahl Clementson, Christine, et al. (författare)
  • Inflammation is detrimental for neurogenesis in adult brain.
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 100:23, s. 13632-13637
  • Tidskriftsartikel (refereegranskat)abstract
    • New hippocampal neurons are continuously generated in the adult brain. Here, we demonstrate that lipopolysaccharide-induced inflammation, which gives rise to microglia activation in the area where the new neurons are born, strongly impairs basal hippocampal neurogenesis in rats. The increased neurogenesis triggered by a brain insult is also attenuated if it is associated with microglia activation caused by tissue damage or lipopolysaccharide infusion. The impaired neurogenesis in inflammation is restored by systemic administration of minocycline, which inhibits microglia activation. Our data raise the possibility that suppression of hippocampal neurogenesis by activated microglia contributes to cognitive dysfunction in aging, dementia, epilepsy, and other conditions leading to brain inflammation.
  •  
3.
  • Englund, Ulrica, et al. (författare)
  • Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry.
  • 2002
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 99:26, s. 17089-17094
  • Tidskriftsartikel (refereegranskat)abstract
    • In vitro expanded neural stem/progenitor cells can undergo region-specific differentiation after transplantation to the developing or adult brain, and display morphologies and markers characteristic of mature neurons. Here we have used patch-clamp techniques to explore whether grafted stem cells also can develop physiological properties of mature neurons and become functionally integrated within host neural circuitry. The immortalized neural progenitor cell line, RN33B, prelabeled with GFP by using a lentiviral vector, was transplanted into the cortex or hippocampus of neonatal rats. We found that the grafted GFP-positive cells differentiated into cells with morphological features of cortical or hippocampal pyramidal neurons, and that many of them had established appropriate cortico-thalamic and contralateral hippocampal connections, respectively, as revealed by retrograde tracing. Whole-cell patch-clamp recordings from grafted cells with morphological characteristics of pyramidal neurons showed that they were able to generate action potentials, and received functional excitatory and inhibitory synaptic inputs from neighboring cells. These data provide evidence that grafted neural progenitors can differentiate into morphologically mature pyramidal projection neurons, establish appropriate long-distance axonal projections, exhibit normal electrophysiological properties, and become functionally integrated into host cortical circuitry.
  •  
4.
  • Kokaia, Merab, et al. (författare)
  • Suppressed kindling epileptogenesis in mice with ectopic overexpression of galanin
  • 2001
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 98:24, s. 14006-14011
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide galanin has been shown to suppress epileptic seizures. In cortical and hippocampal areas, galanin is normally mainly expressed in noradrenergic afferents. We have generated a mouse overexpressing galanin in neurons under the platelet-derived growth factor B promoter. RIA and HPLC analysis revealed up to 8-fold higher levels of galanin in transgenic as compared with wild-type mice. Ectopic galanin overexpression was detected especially in dentate granule cells and hippocampal and cortical pyramidal neurons. Galanin-overexpressing mice showed retardation of seizure generalization during hippocampal kindling, a model for human complex partial epilepsy. The high levels of galanin in mossy fibers found in the transgenic mice were further increased after seizures. Frequency facilitation of field excitatory postsynaptic potentials, a form of short-term synaptic plasticity assessed in hippocampal slices, was reduced in mossy fiber-CA3 cell synapses of galanin-overexpressing mice, indicating suppressed glutamate release. This effect was reversed by application of the putative galanin receptor antagonist M35. These data provide evidence that ectopically overexpressed galanin can be released and dampen the development of epilepsy by means of receptor-mediated action, at least partly by reducing glutamate release from mossy fibers.
  •  
5.
  • LI, WEN, et al. (författare)
  • Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain.
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 113:23, s. 6544-6549
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical trials using cells derived from embryonic ventral mesencephalon have shown that transplanted dopaminergic neurons can survive and function in the long term, as demonstrated by in vivo brain imaging using 18F-fluorodopa and 11C-raclopride positron emission tomography. Here we report the postmortem analysis of a patient with Parkinson’s disease who 24 y earlier underwent unilateral transplantation of embryonic dopaminergic neurons in the putamen and subsequently exhibited major motor improvement and recovery of striatal dopaminergic function. Histopathological analysis showed that a dense, near-normal graft-derived dopaminergic reinnervation of the putamen can be maintained for a quarter of a century despite severe host brain pathology and with no evidence of immune response. In addition, ubiquitin- and α-synuclein–positive inclusions were seen, some with the appearance of typical Lewy bodies, in 11–12% of the grafted dopaminergic neurons, reflecting the spread of pathology from the host brain to the transplants. Because the clinical benefits induced by transplantation in this patient were gradually lost after 14 y posttransplantation, our findings provide the first reported evidence, to our knowledge, that even a viable dopaminergic graft giving rise to extensive striatal reinnervation may lose its efficacy if widespread degenerative changes develop in the host brain.
  •  
6.
  • Lindvall, Olle, et al. (författare)
  • Brain repair by cell replacement and regeneration.
  • 2003
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 100:13, s. 7430-7431
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Palma-Tortosa, Sara, et al. (författare)
  • Activity in grafted human iPS cell-derived cortical neurons integrated in stroke-injured rat brain regulates motor behavior
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:16, s. 9094-9100
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell transplantation can improve behavioral recovery after stroke in animal models but whether stem cell-derived neurons become functionally integrated into stroke-injured brain circuitry is poorly understood. Here we show that intracortically grafted human induced pluripotent stem (iPS) cell-derived cortical neurons send widespread axonal projections to both hemispheres of rats with ischemic lesions in the cerebral cortex. Using rabies virus-based transsynaptic tracing, we find that at 6 mo after transplantation, host neurons in the contralateral somatosensory cortex receive monosynaptic inputs from grafted neurons. Immunoelectron microscopy demonstrates myelination of the graft-derived axons in the corpus callosum and that their terminals form excitatory, glutamatergic synapses on host cortical neurons. We show that the stroke-induced asymmetry in a sensorimotor (cylinder) test is reversed by transplantation. Light-induced inhibition of halorhodopsin-expressing, grafted neurons does not recreate the impairment, indicating that its reversal is not due to neuronal activity in the graft. However, we find bilateral decrease of motor performance in the cylinder test after light-induced inhibition of either grafted or endogenous halorhodopsin-expressing cortical neurons, located in the same area, and after inhibition of endogenous halorhodopsin-expressing cortical neurons by exposure of their axons to light on the contralateral side. Our data indicate that activity in the grafted neurons, probably mediated through transcallosal connections to the contralateral hemisphere, is involved in maintaining normal motor function. This is an example of functional integration of efferent projections from grafted neurons into the stroke-affected brain's neural circuitry, which raises the possibility that such repair might be achievable also in humans affected by stroke.
  •  
8.
  • Pfisterer, Ulrich, et al. (författare)
  • Direct conversion of human fibroblasts to dopaminergic neurons.
  • 2011
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 108:25, s. 10343-10348
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports demonstrate that somatic mouse cells can be directly converted to other mature cell types by using combined expression of defined factors. Here we show that the same strategy can be applied to human embryonic and postnatal fibroblasts. By overexpression of the transcription factors Ascl1, Brn2, and Myt1l, human fibroblasts were efficiently converted to functional neurons. We also demonstrate that the converted neurons can be directed toward distinct functional neurotransmitter phenotypes when the appropriate transcriptional cues are provided together with the three conversion factors. By combining expression of the three conversion factors with expression of two genes involved in dopamine neuron generation, Lmx1a and FoxA2, we could direct the phenotype of the converted cells toward dopaminergic neurons. Such subtype-specific induced neurons derived from human somatic cells could be valuable for disease modeling and cell replacement therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy