SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1097 4172 ;pers:(Nielsen Jens B 1962)"

Sökning: L773:1097 4172 > Nielsen Jens B 1962

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nielsen, Jens B, 1962 (författare)
  • Antibiotic Lethality Is Impacted by Nutrient Availabilities: New Insights from Machine Learning
  • 2019
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 177:6, s. 1373-1374
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • In this issue of Cell, Yang, Wright et al. describe a machine learning approach that that can provide mechanistic insight from chemical screens. They use this approach to uncover how the nutritional availability for Escherichia coli impacts lethality toward three widely used antibiotics.
  •  
2.
  • Nielsen, Jens B, 1962 (författare)
  • Bioactive metabolites: The double-edged sword in your food
  • 2022
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 185:24, s. 4469-4471
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Food contains many different bioactive metabolites that interact with human metabolism. Many of these have health benefits, but in this issue of Cell, researchers show that the gut microbiome can convert a bioactive metabolite to metabolites that may elevate the risks of developing cardiovascular disease.
  •  
3.
  • Nielsen, Jens B, 1962, et al. (författare)
  • Engineering Cellular Metabolism
  • 2016
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 164:6, s. 1185-1197
  • Forskningsöversikt (refereegranskat)abstract
    • Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.
  •  
4.
  • Qin, Ning, 1990, et al. (författare)
  • Flux regulation through glycolysis and respiration is balanced by inositol pyrophosphates in yeast
  • 2023
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 186:4, s. 748-763.e15
  • Tidskriftsartikel (refereegranskat)abstract
    • Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.
  •  
5.
  • Weinberg, R. A., et al. (författare)
  • All You Need Is Mentorship
  • 2016
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 164:6, s. 1092-1093
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Yu, Tao, 1986, et al. (författare)
  • Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis
  • 2018
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 174:6, s. 1549-1572
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy