SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1098 0121 ;lar1:(lnu)"

Sökning: L773:1098 0121 > Linnéuniversitetet

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aikebaier, Faluke, et al. (författare)
  • Effects of short-range electron-electron interactions in doped graphene
  • 2015
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 92:15
  • Tidskriftsartikel (refereegranskat)abstract
    • We study theoretically the effects of short-range electron-electron interactions on the electronic structure of graphene, in the presence of substitutional impurities. Our computational approach is based on the π orbital tight-binding model for graphene, with the electron-electron interactions treated self-consistently at the level of the mean-field Hubbard model. The finite impurity concentration is modeled using the supercell approach. We compare explicitly noninteracting and interacting cases with varying interaction strength and impurity potential strength. We focus in particular on the interaction-induced modifications in the local density of states around the impurity, which is a quantity that can be directly probed by scanning tunneling spectroscopy of doped graphene. We find that the resonant character of the impurity states near the Fermi level is enhanced by the interactions. Furthermore, the size of the energy gap, which opens up at high-symmetry points of the Brillouin zone of the supercell upon doping, is significantly affected by the interactions. The details of this effect depend subtly on the supercell geometry. We use a perturbative model to explain these features and find quantitative agreement with numerical results.
  •  
2.
  • Azimi Mousolou, Vahid, et al. (författare)
  • Spin-electric Berry phase shift in triangular molecular magnets
  • 2016
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 94:23
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a Berry phase effect on the chiral degrees of freedom of a triangular magnetic molecule. The phase is induced by adiabatically varying an external electric field in the plane of the molecule via a spin-electric coupling mechanism present in these frustrated magnetic molecules. The Berry phase effect depends on spin-orbit interaction splitting and on the electric dipole moment. By varying the amplitude of the applied electric field, the Berry phase difference between the two spin states can take any arbitrary value between zero and π, which can be measured as a phase shift between the two chiral states by using spin-echo techniques. Our result can be used to realize an electric-field-induced geometric phase-shift gate acting on a chiral qubit encoded in the ground-state manifold of the triangular magnetic molecule.
  •  
3.
  •  
4.
  • Bessarab, Pavel F., et al. (författare)
  • Harmonic transition-state theory of thermal spin transitions
  • 2012
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical Society. - 1098-0121 .- 1550-235X. ; 85:18
  • Tidskriftsartikel (refereegranskat)abstract
    • A rate theory for thermally activated transitions in spin systems is presented. It is based on a transition-state approximation derived from Landau-Lifshitz equations of motion and quadratic expansion of the energy surface at minima and first order saddle points. While the flux out of the initial state vanishes at first order saddle points, the integrated flux over the hyperplanar transition state is nonzero and gives a rate estimate in good agreement with direct dynamical simulations of test systems over a range in damping constant. The preexponential factor obtained for transitions in model systems representing nanoclusters with 3 to 139 transition metal adatoms is on the order of 1011 to 1013s -1, similar to that of atomic rearrangements.
  •  
5.
  • Bozkurt, M., et al. (författare)
  • Magnetic anisotropy of single Mn acceptors in GaAs in an external magnetic field
  • 2013
  • Ingår i: Physical Review B. Condensed Matter and Materials Physics. - : American Physical society. - 1098-0121 .- 1550-235X. ; 88, s. Article ID: 205203-
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate the effect of an external magnetic field on the physical properties of the acceptor hole statesassociated with single Mn acceptors placed near the (110) surface of GaAs. Cross-sectional scanning tunnelingmicroscopy images of the acceptor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported bytheoretical calculations based on a tight-binding model of Mn acceptors in GaAs. For Mn acceptors on the (110)surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantlythe magnetic anisotropy landscape. However, the acceptor hole wave function is strongly localized around theMn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mnacceptors placed on deeper layers below the surface, the acceptor hole wave function is more delocalized andthe corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However, themagnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 Tcan hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis.We predict that substantially larger magnetic fields are required to observe a significant field dependence of thetunneling current for impurities located several layers below the GaAs surface.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy