SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 ;lar1:(ki)"

Sökning: L773:1352 2310 > Karolinska Institutet

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Beelen, Rob, et al. (författare)
  • Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe : the ESCAPE project
  • 2013
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 72, s. 10-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimating within-city variability in air pollution concentrations is important. Land use regression (LUR) models are able to explain such small-scale within-city variations. Transparency in LUR model development methods is important to facilitate comparison of methods between different studies. We therefore developed LUR models in a standardized way in 36 study areas in Europe for the ESCAPE (European Study of Cohorts for Air Pollution Effects) project.Nitrogen dioxide (NO2) and nitrogen oxides (NOx) were measured with Ogawa passive samplers at 40 or 80 sites in each of the 36 study areas. The spatial variation in each area was explained by LUR modeling. Centrally and locally available Geographic Information System (GIS) variables were used as potential predictors. A leave-one out cross-validation procedure was used to evaluate the model performance.There was substantial contrast in annual average NO2 and NOx concentrations within the study areas. The model explained variances (R2) of the LUR models ranged from 55% to 92% (median 82%) for NO2 and from 49% to 91% (median 78%) for NOx. For most areas the cross-validation R2 was less than 10% lower than the model R2. Small-scale traffic and population/household density were the most common predictors. The magnitude of the explained variance depended on the contrast in measured concentrations as well as availability of GIS predictors, especially traffic intensity data were important. In an additional evaluation, models in which local traffic intensity was not offered had 10% lower R2 compared to models in the same areas in which these variables were offered.Within the ESCAPE project it was possible to develop LUR models that explained a large fraction of the spatial variance in measured annual average NO2 and NOx concentrations. These LUR models are being used to estimate outdoor concentrations at the home addresses of participants in over 30 cohort studies.
  •  
7.
  • Cyrys, Josef, et al. (författare)
  • Variation of NO2 and NOx concentrations between and within 36 European study areas : Results from the ESCAPE study
  • 2012
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 62, s. 374-390
  • Tidskriftsartikel (refereegranskat)abstract
    • The ESCAPE study (European Study of Cohorts for Air Pollution Effects) investigates long-term effects of exposure to air pollution on human health in Europe. This paper documents the spatial variation of measured NO2 and NOx concentrations between and within 36 ESCAPE study areas across Europe.In all study areas NO2 and NOx were measured using standardized methods between October 2008 and April 2011. On average, 41 sites were selected per study area, including regional and urban background as well as street sites. The measurements were conducted in three different seasons, using Ogawa badges. Average concentrations for each site were calculated after adjustment for temporal variation using data obtained from a routine monitor background site.Substantial spatial variability was found in NO2 and NOx concentrations between and within study areas; 40% of the overall NO2 variance was attributable to the variability between study areas and 60% to variability within study areas. The corresponding values for NOx were 30% and 70%. The within-area spatial variability was mostly determined by differences between street and urban background concentrations. The street/urban background concentration ratio for NO2 varied between 1.09 and 3.16 across areas. The highest median concentrations were observed in Southern Europe, the lowest in Northern Europe.In conclusion, we found significant contrasts in annual average NO2 and NOx concentrations between and especially within 36 study areas across Europe. Epidemiological long-term studies should therefore consider different approaches for better characterization of the intra-urban contrasts, either by increasing of the number of monitors or by modelling.
  •  
8.
  •  
9.
  • Elihn, Karine, et al. (författare)
  • Air quality impacts of a large waste fire in Stockholm, Sweden
  • 2023
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 315
  • Tidskriftsartikel (refereegranskat)abstract
    • Fires in waste facilities are a common occurrence. Since many waste facilities are located adjacent to densely populated areas, these fires could potentially expose large populations to the emitted pollutants. However, at the moment there are only few field studies investigating the impact of waste fire emissions on air quality since the unpredictable nature of these events makes them challenging to capture. This study investigated the impact of a large and persistent un-prescribed fire in a waste storage facility in Stockholm county, Sweden, on the local air quality of two residential areas in close proximity to the fire. In-situ measurements of particulate matter, black carbon and nitrogen oxide concentrations were conducted both during open burning and after the fire was fully covered. In addition, filter samples were collected for offline analysis of organic composition, metal content and toxicity. Strongly increased concentrations of PM10, PM2.5 and black carbon were found during the open burning period, especially when the wind was coming from the direction of the fire. In addition, elevated concentrations of particulate heavy metals and polycyclic aromatic hydrocarbons were observed in the air during the open burning period. These results show that waste fires can have a strong impact on the air quality of nearby residential areas.
  •  
10.
  • Hagerman, Inger, et al. (författare)
  • Effects on heart rate variability by artificially generated indoor nano-sized particles in a chamber study
  • 2014
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310. ; 88, s. 165-171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Airborne particles are associated with increased morbidity and mortality due to respiratory and cardiovascular diseases in polluted areas. There is a growing interest in nano-sized particles with diameter < 100 nm and their potential health effects. Heart rate variability (HRV) is a noninvasive method for cardiovascular risk prediction in high prevalent groups. Aim of study: The aim was to evaluate the impact of nano-sized indoor air particles on HRV for healthy and adult females. Methods: All exposures were performed as controlled chamber experiments with particle exposure from burning candles, terpene + ozone reactions or filtered air in a double-blind cross over design. Twenty-two healthy females were investigated during 10 min periods at different exposures and the reactivity in high frequency (HF) spectral band of HRV were computed. Results: Heart rate was unchanged from baseline values in all groups during all experimental settings. HF power of HRV tended to increase during exposure to particles from burning candle while particles from terpene + ozone reactions tended to decrease HF power. Conclusions: Exposure to nano-sized particles of burning candles or terpene + ozone reactions results in different patterns of heart rate variability, with signs of altered autonomic cardiovascular control. Practical implications: This study indicates that the HRV method may be used for information on physiological responses of exposure to different nano-sized particles and contribute to the understanding of mechanisms behind health effects of particle exposures. (C) 2014 The Authors. Published by Elsevier Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy