SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 ;pers:(Cyrys J)"

Sökning: L773:1352 2310 > Cyrys J

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Hazenkamp-Von Arx, M.E., et al. (författare)
  • PM2.5 and NO2 assessment in 21 European study centres of ECRHS II : annual means and seasonal differences
  • 2004
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 38:13, s. 1943-1953
  • Tidskriftsartikel (refereegranskat)abstract
    • The follow-up of cohorts of adults from more than 20 European centres of the former ECRHS I (1989-1992) investigates long-term effects of exposure to ambient air pollution on respiratory health, in particular asthma and change of pulmonary function. Since PM2.5 is not routinely monitored in Europe, we measured PM2.5 concentrations in 21 participating centres to estimate 'background' exposure in these cities. Winter (November-February), summer (May-August) and annual mean (all months) values of PM2.5 were determined from measuring periods between June 2000 and November 2001. Sampling was conducted for 7 days per month for a year. Annual and winter mean concentrations of PM2.5 vary substantially being lowest in Iceland and highest in centres in Northern Italy. Annual mean concentrations ranged from 3.7 to 44.9 mug m(-3), winter mean concentrations from 4.8 to 69.2 mug m(-3), and summer mean concentrations from 3.3 to 23.1 mugm(-3). Seasonal variability occurred but did not follow the same pattern across all centres. Therefore, ranking of centres varied from summer to winter. Simultaneously, NO2 concentrations were measured using passive sampling tubes. Annual mean NO2 concentrations range from 4.9 to 72.1 mug m(-3) with similar seasonal variations across centres and constant ranking of centres between seasons. The correlation between annual NO2 and PM2.5 concentrations is fair (Spearman correlation coefficient r(s) = 0.75), but when considered as monthly means the correlation is far less consistent and varies substantially between centres. The range of PM2.5 mass concentrations obtained in ECRHS II is larger than in other current cohort studies on long-term effects of air pollution. This substantial variation in PM2.5 exposure will improve statistical power in future multilevel health analyses and to some degree may compensate for the lack of information on within-city variability. Seasonal means may be used to indicate potential differences in the toxicity across the year. Across ECRHS cities annual NO2 might serve as a surrogate for PM2.5, especially for past exposure assessment, when PM2.5 is not available.
  •  
4.
  •  
5.
  • Putaud, J. -P, et al. (författare)
  • A European aerosol phenomenology-3 : Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe
  • 2010
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 44:10, s. 1308-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper synthesizes data on aerosol (particulate matter, PM) physical and chemical characteristics, which were obtained over the past decade in aerosol research and monitoring activities at more than 60 natural background, rural, near-city, urban, and kerbside sites across Europe. The data include simultaneously measured PM10 and/or PM2.5 mass on the one hand, and aerosol particle number concentrations or PM chemistry on the other hand. The aerosol data presented in our previous works (Van Dingenen et al., 2004; Putaud et al., 2004) were updated and merged to those collected in the framework of the EU supported European Cooperation in the field of Scientific and Technical action COST633 (Particulate matter: Properties related to health effects). A number of conclusions from our previous studies were confirmed. There is no single ratio between PM2.5 and PM10 mass concentrations valid for all sites, although fairly constant ratios ranging from 0.5 to 0.9 are observed at most individual sites. There is no general correlation between PM mass and particle number concentrations, although particle number concentrations increase with PM2.5 levels at most sites. The main constituents of both PM10 and PM2.5 are generally organic matter, sulfate and nitrate. Mineral dust can also be a major constituent of PM10 at kerbside sites and in Southern Europe. There is a clear decreasing gradient in SO42- and NO3- contribution to PM10 when moving from rural to urban to kerbside sites. In contrast, the total carbon/PM10 ratio increases from rural to kerbside sites. Some new conclusions were also drawn from this work: the ratio between ultrafine particle and total particle number concentration decreases with PM2.5 concentration at all sites but one, and significant gradients in PM chemistry are observed when moving from Northwestern, to Southern to Central Europe. Compiling an even larger number of data sets would have further increased the significance of our conclusions, but collecting all the aerosol data sets obtained also through research projects remains a tedious task.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy