SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 ;pers:(Norman M)"

Sökning: L773:1352 2310 > Norman M

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Denby, B. R., et al. (författare)
  • Road salt emissions : A comparison of measurements and modelling using the NORTRIP road dust emission model
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier Ltd. - 1352-2310 .- 1873-2844. ; 141, s. 508-522
  • Tidskriftsartikel (refereegranskat)abstract
    • De-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of −0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes. © 2016 The Authors
  •  
2.
  • Johansson, Christer, et al. (författare)
  • Road traffic emission factors for heavy metals
  • 2009
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:31, s. 4681-4688
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the emissions and concentrations of heavy metals in urban air is a prerequisite for assessing their health effects. In this paper a combination of measurements and modelling is used to assess the contribution from road traffic emissions. Concentrations of particulate heavy metals in air were measured simultaneously during 1 year at a densely trafficked street and at an urban background site in Stockholm, Sweden. Annual mean concentrations of cadmium were 50 times lower than the EU directive and for nickel and arsenic concentrations were 10 and six times lower, respectively. More than a factor of two higher concentrations was in general observed at the street in comparison to roof levels indicating the strong influence from local road traffic emissions. The only compound with a significantly decreasing trend in the urban background was Pb with 9.1 ng m−3 in 1995/96 compared to 3.4 ng m−3 2003/04. This is likely due to decreased emissions from wear of brake linings and reduced emissions due to oil and coal combustion in central Europe. Total road traffic emission factors for heavy metals were estimated using parallel measurements of NOx concentrations and knowledge of NOx emission factors. In general, the emission factors for the street were higher than reported in road tunnel measurements. This could partly be due to different driving conditions, since especially for metals which are mainly emitted from brake wear, more stop and go driving in the street compared to in road tunnels is likely to increase emissions. Total emissions were compared with exhaust emissions, obtained from the COPERT model and brake wear emissions based on an earlier study in Stockholm. For Cu, Ni and Zn the sum of brake wear and exhaust emissions agreed very well with estimated total emission factors in this study. More than 90% of the road traffic emissions of Cu were due to brake wear. For Ni more than 80% is estimated to be due to exhaust emissions and for Zn around 40% of road traffic emissions are estimated to be due to exhaust emissions. Pb is also mainly due to exhaust emissions (90%); a fuel Pb content of only 0.5 mg L−1 would give similar emission factor as that based on the concentration increment at the street. This is the first study using simultaneous measurements of heavy metals at street and roof enabling calculations of emission factors using a tracer technique.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy