SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1352 2310 ;pers:(Sellegri K.)"

Sökning: L773:1352 2310 > Sellegri K.

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cavalli, F., et al. (författare)
  • A European aerosol phenomenology-4 : Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 144, s. 133-145
  • Tidskriftsartikel (refereegranskat)abstract
    • Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and More uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0:4 to 2.8 mu g C/m(3)) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 mu g C/m(3), and from 0.1 to 2 mu g C/m(3), respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.
  •  
2.
  • Monks, P. S., et al. (författare)
  • Atmospheric composition change : global and regional air quality
  • 2009
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:33, s. 5268-5350
  • Forskningsöversikt (refereegranskat)abstract
    • Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems heritage and, climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.
  •  
3.
  • Rose, C., et al. (författare)
  • Frequent nucleation events at the high altitude station of Chacaltaya (5240 m a.s.l.), Bolivia
  • 2015
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 102, s. 18-29
  • Tidskriftsartikel (refereegranskat)abstract
    • While nucleation may represent one of the major processes responsible for the total aerosol number burden in the atmosphere, and especially at high altitude, new particle formation (NPF) events occurring in the upper part of the troposphere are poorly documented in the literature, particularly in the southern hemisphere. NPF events were detected and analyzed at the highest measurement site in the world, Chacaltaya (5240 m a.s.l.), Bolivia between January 1 and December 31 2012, using a Neutral Aerosol and Ion Spectrometer (NAIS) that detects clusters down to 0.4 nm. NPF frequency at Chacaltaya is one of the highest reported so far (63.9%) and shows a clear seasonal dependency with maximum up to 100% during the dry season. This high seasonality of the NPF events frequency was found to be likely linked to the presence of clouds in the vicinity of the station during the wet season. Multiple NPF events are seen on almost 50% of event days and can reach up to 6 events per day, increasing the potential of nucleation to be the major contributor to the particle number concentrations in the upper troposphere. Ion-induced nucleation (IIN) was 14.8% on average, which is higher than the IIN fractions reported for boundary layer stations. The median formation rate of 2 nm particles computed for first position events is increased during the dry season (1.90 cm(-3) s(-1)) compared to the wet season (1.02 cm(-3) s(-1)), showing that events are more intense, on top of being more frequent during the dry season. On the contrary, particle growth rates (GRs) are on average enhanced during the wet season, which could be explained by higher amount of biogenic volatile organic compounds transported from the Amazon rainforest. The NPF events frequency is clearly enhanced when air masses originate from the oceanic sector, with a frequency of occurrence close to 1. However, based on the particle GRs, we calculate that particles most likely nucleate after the oceanic air masses reach the land and are presumably not originating from the marine free troposphere. The high frequency of NPF events, the occurrence of multiple events per day, and the relatively high formation rates observed at Chacaltaya imply that nucleation and growth are likely to be the major mechanism feeding the upper atmosphere with aerosol particles in this part of the continent.
  •  
4.
  • Wiedensohler, A., et al. (författare)
  • Black carbon emission and transport mechanisms to the free troposphere at the La Paz/El Alto (Bolivia) metropolitan area based on the Day of Census (2012)
  • 2018
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 194, s. 158-169
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban development, growing industrialization, and increasing demand for mobility have led to elevated levels of air pollution in many large cities in Latin America, where air quality standards and WHO guidelines are frequently exceeded. The conurbation of the metropolitan area of La Paz/El Alto is one of the fastest growing urban settlements in South America with the particularity of being located in a very complex terrain at a high altitude. As many large cities or metropolitan areas, the metropolitan area of La Paz/El Alto and the Altiplano region are facing air quality deterioration. Long-term measurement data of the equivalent black carbon (eBC) mass concentrations and particle number size distributions (PNSD) from the Global Atmosphere Watch Observatory Chacaltaya (CHC; 5240 m a.s.l., above sea level) indicated a systematic transport of particle matter from the metropolitan area of La Paz/El Alto to this high altitude station and subsequently to the lower free troposphere. To better understand the sources and the transport mechanisms, we conducted eBC and PNSDs measurements during an intensive campaign at two locations in the urban area of La Paz/El Alto from September to November 2012. While the airport of El Alto site (4040 m a.s.l.) can be seen as representative of the urban and Altiplano background, the road site located in Central La Paz (3590 m a.s.l.) is representative for heavy traffic-dominated conditions. Peaks of eBC mass concentrations up to 5 mu g m(-3) were observed at the El Alto background site in the early morning and evening, while minimum values were detected in the early afternoon, mainly due to thermal convection and change of the planetary boundary layer height. The traffic-related eBC mass concentrations at the road site reached maximum values of 10-20 mu g m(-3). A complete traffic ban on the specific Bolivian Day of Census (November 21, 2012) led to a decrease of eBC below 1 mu g m(-3) at the road site for the entire day. Compared to the day before and after, particle number concentrations decreased by a factor between 5 and 25 over the particle size range from 10 to 800 nm, while the submicrometer particle mass concentration dropped by approximately 80%. These results indicate that traffic is the dominating source of BC and particulate air pollution in the metropolitan area of La Paz/El Alto. In general, the diurnal cycle of eBC mass concentration at the Chacaltaya observatory is anti-correlated to the observations at the El Alto background site. This pattern indicates that the traffic-related particulate matter, including BC, is transported to higher altitudes with the developing of the boundary layer during daytime. The metropolitan area of La Paz/El Alto seems to be a significant source for BC of the regional lower free troposphere. From there, BC can be transported over long distances and exert impact on climate and composition of remote southern hemisphere.
  •  
5.
  • Zanatta, M., et al. (författare)
  • A European aerosol phenomenology-5 : Climatology of black carbon optical properties at 9 regional background sites across Europe
  • 2016
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 145, s. 346-364
  • Tidskriftsartikel (refereegranskat)abstract
    • A reliable assessment of the optical properties of atmospheric black carbon is of crucial importance for an accurate estimation of radiative forcing. In this study we investigated the spatio-temporal variability of the mass absorption cross-section (MAC) of atmospheric black carbon, defined as light absorption coefficient (sigma(ap)) divided by elemental carbon mass concentration (m(EC)). sigma(ap) and m(EC) have been monitored at supersites of the ACTRIS network for a minimum period of one year. The 9 rural background sites considered in this study cover southern Scandinavia, central Europe and the Mediterranean. sigma(ap) was determined using filter based absorption photometers and m(EC) using a thermal-optical technique. Homogeneity of the data-set was ensured by harmonization of all involved methods and instruments during extensive intercomparison exercises at the European Center for Aerosol Calibration (ECAC). Annual mean values of sigma(ap) at a wavelength of 637 nm vary between 0.66 and 1.3 Mm(-1) in southern Scandinavia, 3.7-11 Mm(-1) in Central Europe and the British Isles, and 2.3-2.8 Mm(-1) in the Mediterranean. Annual mean values of mEC vary between 0.084 and 0.23 mu g m(-3) in southern Scandinavia, 0.28 -1.1 in Central Europe and the British Isles, and 0.22-0.26 in the Mediterranean. Both sigma(ap) and mEC in southern Scandinavia and Central Europe have a distinct seasonality with maxima during the cold season and minima during summer, whereas at the Mediterranean sites an opposite trend was observed. Annual mean MAC values were quite similar across all sites and the seasonal variability was small at most sites. Consequently, a MAC value of 10.0 m(2) g(-1) (geometric standard deviation = 133) at a wavelength of 637 nm can be considered to be representative of the mixed boundary layer at European background sites, where BC is expected to be internally mixed to a large extent. The observed spatial variability is rather small compared to the variability of values in previous literature, indicating that the harmonization efforts resulted in substantially increased precision of the reported MAC. However, absolute uncertainties of the reported MAC values remain as high as +/- 30-70% due to the lack of appropriate reference methods and calibration materials. The mass ratio between elemental carbon and non-light-absorbing matter was used as a proxy for the thickness of coatings around the BC cores, in order to assess the influence of the mixing state on the MAC of BC. Indeed, the MAC was found to increase with increasing values of the coating thickness proxy. This provides evidence that coatings do increase the MAC of atmospheric BC to some extent, which is commonly referred to as lensing effect.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy