SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1361 6560 ;pers:(Carlsson Tedgren Åsa)"

Sökning: L773:1361 6560 > Carlsson Tedgren Åsa

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaveckyte, Vaiva, 1991-, et al. (författare)
  • Impact of the I-value of diamond on the energy deposition in different beam qualities
  • 2021
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics (IOP). - 0031-9155 .- 1361-6560. ; 66:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Diamond detectors are increasingly employed in dosimetry. Their response has been investigated by means of Monte Carlo (MC) methods, but there is no consensus on what mass density ρ, mean excitation energy I and number of conduction electrons per atom nce to use in the simulations. The ambiguity occurs due to its seeming similarity with graphite (both are carbon allotropes). Contrary to diamond, graphite has been well-characterized. Except for the difference in ρ between crystalline graphite (2.265 g cm-3) and diamond (3.515 g cm-3), their dielectric properties are assumed to be identical. This is incorrect, and the two materials should be distinguished: (ρ = 2.265 g cm-3, I = 81.0 eV, nce = 1) for graphite and (ρ = 3.515 g cm-3, I = 88.5 eV, nce = 0) for diamond. Simulations done with the MC code PENELOPE show that the energy imparted in diamond decreases by up to 1% with respect to 'pseudo-diamond' (ρ = 3.515 g cm-3, I = 81.0 eV, nce = 0) depending on the beam quality and cavity thickness. The energy imparted changed the most in cavities that are small compared with the range of electrons. The difference in the density-effect term relative to graphite was the smallest for diamond owing to an interplay effect that ρ, I and nce have on this term, in contrast to pseudo-diamond media when either ρ or I alone were adjusted. The study also presents a parameterized density-effect correction function for diamond that may be used by MC codes like EGSnrc. The ESTAR program assumes that nce = 2 for all carbon-based materials, hence it delivers an erroneous density-effect correction term for graphite and diamond. Despite the small changes of the energy imparted in diamond simulated with two different I values and expected close-to-negligible deviation from the published small-field output correction data, it is important to pay attention to material properties and model the medium faithfully.
  •  
2.
  • Morén, Björn, 1987-, et al. (författare)
  • A mathematical optimization model for spatial adjustments of dose distributions in high dose-rate brachytherapy
  • 2019
  • Ingår i: Physics in Medicine and Biology. - : IOP PUBLISHING LTD. - 0031-9155 .- 1361-6560. ; 64:22
  • Tidskriftsartikel (refereegranskat)abstract
    • High dose-rate brachytherapy is a modality of radiation therapy used for cancer treatment, in which the radiation source is placed within the body. The treatment goal is to give a high enough dose to the tumour while sparing nearby healthy tissue and organs (organs-at-risk). The most common criteria for evaluating dose distributions are dosimetric indices. For the tumour, such an index is the portion of the volume that receives at least a specified dose level (e.g. the prescription dose), while for organs-at-risk it is instead the portion of the volume that receives at most a specified dose level. Dosimetric indices are aggregate criteria and do not consider spatial properties of the dose distribution. Further, there are neither any established evaluation criteria for characterizing spatial properties, nor have such properties been studied in the context of mathematical optimization of brachytherapy. Spatial properties are however of clinical relevance and therefore dose plans are sometimes adjusted manually to improve them. We propose an optimization model for reducing the prevalence of contiguous volumes with a too high dose (hot spots) or a too low dose (cold spots) in a tentative dose plan. This model is independent of the process of constructing the tentative plan. We conduct computational experiments with tentative plans obtained both from optimization models and from clinical practice. The objective function considers pairs of dose points and each pair is given a distance-based penalty if the dose is either too high or too low at both dose points. Constraints are included to retain dosimetric indices at acceptable levels. Our model is designed to automate the manual adjustment step in the planning process. In the automatic adjustment step large-scale optimization models are solved. We show reductions of the volumes of the largest hot and cold spots, and the computing times are feasible in clinical practice.
  •  
3.
  • Morén, Björn, 1987-, et al. (författare)
  • Mathematical optimization of high dose-rate brachytherapy-derivation of a linear penalty model from a dose-volume model
  • 2018
  • Ingår i: Physics in Medicine and Biology. - : IOP PUBLISHING LTD. - 0031-9155 .- 1361-6560. ; 63:6
  • Tidskriftsartikel (refereegranskat)abstract
    • High dose-rate brachytherapy is a method for cancer treatment where the radiation source is placed within the body, inside or close to a tumour. For dose planning, mathematical optimization techniques are being used in practice and the most common approach is to use a linear model which penalizes deviations from specified dose limits for the tumour and for nearby organs. This linear penalty model is easy to solve, but its weakness lies in the poor correlation of its objective value and the dose-volume objectives that are used clinically to evaluate dose distributions. Furthermore, the model contains parameters that have no clear clinical interpretation. Another approach for dose planning is to solve mixed-integer optimization models with explicit dose-volume constraints which include parameters that directly correspond to dose-volume objectives, and which are therefore tangible. The two mentioned models take the overall goals for dose planning into account in fundamentally different ways. We show that there is, however, a mathematical relationship between them by deriving a linear penalty model from a dose-volume model. This relationship has not been established before and improves the understanding of the linear penalty model. In particular, the parameters of the linear penalty model can be interpreted as dual variables in the dose-volume model.
  •  
4.
  • Song, William Y., et al. (författare)
  • Emerging technologies in brachytherapy
  • 2021
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing Ltd. - 0031-9155 .- 1361-6560. ; 66:23
  • Forskningsöversikt (refereegranskat)abstract
    • Brachytherapy is a mature treatment modality. The literature is abundant in terms of review articles and comprehensive books on the latest established as well as evolving clinical practices. The intent of this article is to part ways and look beyond the current state-of-the-art and review emerging technologies that are noteworthy and perhaps may drive the future innovations in the field. There are plenty of candidate topics that deserve a deeper look, of course, but with practical limits in this communicative platform, we explore four topics that perhaps is worthwhile to review in detail at this time. First, intensity modulated brachytherapy (IMBT) is reviewed. The IMBT takes advantage of anisotropic radiation profile generated through intelligent high-density shielding designs incorporated onto sources and applicators such to achieve high quality plans. Second, emerging applications of 3D printing (i.e. additive manufacturing) in brachytherapy are reviewed. With the advent of 3D printing, interest in this technology in brachytherapy has been immense and translation swift due to their potential to tailor applicators and treatments customizable to each individual patient. This is followed by, in third, innovations in treatment planning concerning catheter placement and dwell times where new modelling approaches, solution algorithms, and technological advances are reviewed. And, fourth and lastly, applications of a new machine learning technique, called deep learning, which has the potential to improve and automate all aspects of brachytherapy workflow, are reviewed. We do not expect that all ideas and innovations reviewed in this article will ultimately reach clinic but, nonetheless, this review provides a decent glimpse of what is to come. It would be exciting to monitor as IMBT, 3D printing, novel optimization algorithms, and deep learning technologies evolve over time and translate into pilot testing and sensibly phased clinical trials, and ultimately make a difference for cancer patients. Todays fancy is tomorrows reality. The future is bright for brachytherapy.
  •  
5.
  • Adolfsson, Emelie, et al. (författare)
  • Investigation of signal fading in lithium formate EPR dosimeters using a new sensitive method
  • 2012
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics (IOP). - 0031-9155 .- 1361-6560. ; 57:8, s. 2209-2217
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to investigate signal fading in lithium formate electron paramagnetic resonance (EPR) dosimeters used for clinical applications in radiotherapy. A new experimental method for determination of signal fading, designed to resolve small changes in signal from slowly decaying unstable radicals, was used. Possible signal fading in lithium formate due to different storage temperatures was also tested. Air humidity was kept at a constant level of 33% throughout the experiments. The conclusion drawn from the investigations was that the EPR signal from lithium formate is stable during at least 1 month after irradiation and is not sensitive to variations in storage temperature andlt;40 degrees C when kept at a relative air humidity of 33%. This makes lithium formate a suitable dosimeter for transfer dosimetry in clinical audits.
  •  
6.
  • Adolfsson, Emelie, et al. (författare)
  • Measurement of absorbed dose to water around an electronic brachytherapy source : Comparison of two dosimetry systems: lithium formate EPR dosimeters and radiochromic EBT2 film
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 60:9, s. 3869-3882
  • Tidskriftsartikel (refereegranskat)abstract
    • Interest in high dose rate (HDR) electronic brachytherapy operating at 50 kV is increasing. For quality assurance it is important to identify dosimetry systems that can measure the absorbed doses in absolute terms which is difficult in this energy region. In this work a comparison is made between two dosimetry systems, EPR lithium formate dosimeters and radiochromic EBT2 film.Both types of dosimeters were irradiated simultaneously in a PMMA phantom using the Axxent EBS. Absorbed dose to water was determined at distances of 10 mm, 30 mm and 50 mm from the EBS. Results were traceable to different primary standards as regards to absorbed dose to water (EPR) and air kerma (EBT2). Monte Carlo simulations were used in absolute terms as a third estimate of absorbed dose to water.Agreement within the estimated expanded (k = 2) uncertainties (5% (EPR), 7% (EBT2)) was found between the results at 30 mm and 50 mm from the x-ray source. The same result was obtained in 4 repetitions of irradiation, indicating high precision in the measurements with both systems. At all distances, agreement between EPR and Monte Carlo simulations was shown as was also the case for the film measurements at 30mm and 50mm. At 10mm the geometry for the film measurements caused too large uncertainty in measured values depending on the exact position (within sub-mm distances) of the EBS and the 10 mm film results were exculded from comparison.This work has demonstrated good performance of the lithium formate EPR dosimetry system in accordance with earlier experiments at higher photon energies (192Ir HDR brachytherapy). It was also highlighted that there might be issues regarding the energy dependence and intrinsic efficiency of the EBT2 film that need to be considered for measurements using low energy sources.
  •  
7.
  • Carlsson Tedgren, Åsa, et al. (författare)
  • Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy
  • 2013
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 58:8, s. 2561-2579
  • Tidskriftsartikel (refereegranskat)abstract
    • Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium D-med then needs to be converted into dose to water in tissue D-w,D- med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm-10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from I-125, Yb-169 and Ir-192 sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert D-med into D-w,D- med for small and large cavities. Results show that 1-10 nm sized cavities are small at all investigated photon energies; 100 mu m cavities are large only at photon energies andlt;20 keV. A choice of an appropriate conversion coefficient D-w,D- med/D-med is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass -collision-stopping powers for converting D-med into D-w,D- med.
  •  
8.
  • Carlsson Tedgren, Åsa, et al. (författare)
  • The collapsed cone algorithm for Ir-192 dosimetry using phantom-size adaptive multiple-scatter point kernels
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 60:13, s. 5313-5323
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this work was to investigate how dose distributions calculated with the collapsed cone (CC) algorithm depend on the size of the water phantom used in deriving the point kernel for multiple scatter. A research version of the CC algorithm equipped with a set of selectable point kernels for multiple-scatter dose that had initially been derived in water phantoms of various dimensions was used. The new point kernels were generated using EGSnrc in spherical water phantoms of radii 5 cm, 7.5 cm, 10 cm, 15 cm, 20 cm, 30 cm and 50 cm. Dose distributions derived with CC in water phantoms of different dimensions and in a CT-based clinical breast geometry were compared to Monte Carlo (MC) simulations using the Geant4-based brachytherapy specific MC code Algebra. Agreement with MC within 1% was obtained when the dimensions of the phantom used to derive the multiple-scatter kernel were similar to those of the calculation phantom. Doses are overestimated at phantom edges when kernels are derived in larger phantoms and underestimated when derived in smaller phantoms (by around 2% to 7% depending on distance from source and phantom dimensions). CC agrees well with MC in the high dose region of a breast implant and is superior to TG43 in determining skin doses for all multiple-scatter point kernel sizes. Increased agreement between CC and MC is achieved when the point kernel is comparable to breast dimensions. The investigated approximation in multiple scatter dose depends on the choice of point kernel in relation to phantom size and yields a significant fraction of the total dose only at distances of several centimeters from a source/implant which correspond to volumes of low doses. The current implementation of the CC algorithm utilizes a point kernel derived in a comparatively large (radius 20 cm) water phantom. A fixed point kernel leads to predictable behaviour of the algorithm with the worst case being a source/implant located well within a patient/phantom for which low doses at phantom edges can be overestimated by 2-5 %. It would be possible to improve the situation by using a point kernel for multiple-scatter dose adapted to the patient/phantom dimensions at hand.
  •  
9.
  • Lindborg, L, et al. (författare)
  • Lineal energy and radiation quality in radiation therapy: model calculations and comparison with experiment
  • 2013
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics: Hybrid Open Access. - 0031-9155 .- 1361-6560. ; 58:10, s. 3089-3105
  • Tidskriftsartikel (refereegranskat)abstract
    • Microdosimetry is a recommended method for characterizing radiation quality in situations when the biological effectiveness under test is not well known. In such situations, the radiation beams are described by their lineal energy probability distributions. Results from radiobiological investigations in the beams are then used to establish response functions that relate the lineal energy to the relative biological effectiveness (RBE). In this paper we present the influence of the size of the simulated volume on the relation to the clinical RBE values (or weighting factors). A single event probability distribution of the lineal energy is approximated by its dose average lineal energy ((y) over bar (D)) which can be measured or calculated for volumes from a few micrometres down to a few nanometres. The clinical RBE values were approximated as the ratio of the alpha-values derived from the LQ-relation. Model calculations are presented and discussed for the SOBP of a C-12 ion (290 MeV u(-1)) and the reference Co-60 gamma therapy beam. Results were compared with those for a conventional x-ray therapy beam, a 290 MeV proton beam and a neutron therapy beam. It is concluded that for a simulated volume of about 10 nm, the alpha-ratio increases approximately linearly with the (y) over bar (D)-ratio for all the investigated beams. The correlation between y and alpha provides the evidence to characterize a radiation therapy beam by the lineal energy when, for instance, weighting factors are to be estimated.
  •  
10.
  • Paiva Fonseca, Gabriel, et al. (författare)
  • Dose specification for Ir-192 high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium
  • 2015
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing: Hybrid Open Access. - 0031-9155 .- 1361-6560. ; 60:11, s. 4565-4579
  • Tidskriftsartikel (refereegranskat)abstract
    • Dose calculation in high dose rate brachytherapy with Ir-192 is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-inmedium (D-m,D-m) and dose-to-water-in-medium (D-w,D-m). The relation between D-m,D-m and D-w,D-m for Ir-192 is the main goal of this study, in particular the dependence of D-w,D-m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: D-m,D-m, D-w,D-m (LCT), mean photon energy and photon fluence. D-w,D-m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between D-m,D-m and D-w,D-m (SCT or LCT) can be negligible (less than1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between D-w,D-m (SCT) and D-w,D-m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between D-m,D-m and D-w,D-m (SCT) mainly depend on tissue type, differences between D-m,D-m and D-w,D-m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy