SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1361 6560 ;pers:(Danielsson Mats)"

Sökning: L773:1361 6560 > Danielsson Mats

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bertilson, M., et al. (författare)
  • Analyzer-free hard x-ray interferometry
  • 2024
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics. - 0031-9155 .- 1361-6560. ; 69:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To enable practical interferometry-based phase contrast CT using standard incoherent x-ray sources, we propose an imaging system where the analyzer grating is replaced by a high-resolution detector. Since there is no need to perform multiple exposures (with the analyzer grating at different positions) at each scan angle, this scheme is compatible with continuous-rotation CT apparatus, and has the potential to reduce patient radiation dose and patient motion artifacts. Approach. Grating-based x-ray interferometry is a well-studied technique for imaging soft tissues and highly scattering objects embedded in such tissues. In addition to the traditional x-ray absorption-based image, this technique allows reconstruction of the object phase and small-angle scattering information. When using conventional incoherent, polychromatic, hard x-ray tubes as sources, three gratings are usually employed. To sufficiently resolve the pattern generated in these interferometers with contemporary x-ray detectors, an analyzer grating is used, and consequently multiple images need to be acquired for each view angle. This adds complexity to the imaging system, slows image acquisition and thus increases sensitivity to patient motion, and is not dose efficient. By simulating image formation based on wave propagation, and proposing a novel phase retrieval algorithm based on a virtual grating, we assess the potential of a analyzer-grating-free system to overcome these limitations. Main results. We demonstrate that the removal of the analyzer-grating can produce equal image contrast-to-noise ratio at reduced dose (by a factor of 5), without prolonging scan duration. Significance. By demonstrating that an analyzer-free CT system, in conjuction with an efficient phase retrieval algorithm, can overcome the prohibitive dose and workflow penalties associated grating-stepping, an alternative path towards realizing clinical inteferometric CT appears possible.
  •  
2.
  • Danielsson, Mats, Professor, et al. (författare)
  • Photon-counting x-ray detectors for CT
  • 2021
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 66:3, s. 03TR01-
  • Forskningsöversikt (refereegranskat)abstract
    • The introduction of photon-counting detectors is expected to be the next major breakthrough in clinical x-ray CT. During the last decade, there has been considerable research activity in the field of photon-counting CT, in terms of both hardware development and theoretical understanding of the factors affecting image quality. In this article, we review the recent progress in this field with the intent of highlighting the relationship between detector design considerations and the resulting image quality. We discuss detector design choices such as converter material, pixel size, and readout electronics design, and then elucidate their impact on detector performance in terms of dose efficiency, spatial resolution, and energy resolution. Furthermore, we give an overview of data processing, reconstruction methods and metrics of imaging performance; outline clinical applications; and discuss potential future developments.
  •  
3.
  • Jin, Zihui, et al. (författare)
  • First experimental evaluation of count-rate performance for micrometre resolution deep silicon detector
  • 2024
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 69:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. An ultra-fine-pitch deep silicon detector has been developed for clinical photon-counting computed tomography (CT). With a small pixel size of 14 × 650 μm2, it has shown potential to reach micrometre spatial resolution in previous simulation studies. A detector prototype with such geometry has been manufactured, and we report on the first experimental evaluation of its count-rate performance. Approach. The measurement was carried out at MAX IV synchrotron laboratory with 35 keV monochromatic x-rays. By inserting tungsten attenuators of 50, 75, 100, 150, 200, 225, 325 μ m-thicknesses into the beam, the response of the detector to fluence rates from 3.3 × 107 to 1.3 × 1011 mm−2 s−1 was characterized. Main results. The measurement result showed that the detector exhibited count rate linearity up to 6.66 × 108 mm−2 s−1 with 13% count loss and was still functional at count rate up to 2.9 × 1010 mm−2 s−1. A semi-nonparalyzable dead-time model was fitted to the count-rate behaviour of the detector, showing great agreement with the measured data, with an estimated nonparalyzable dead time of 2.9 ns. Significance. This is the first experimental evaluation of the count-rate performance for a deep silicon detector with such small pixel geometry. The results suggest that this type of detector shows the potential to be used at fluence rates encountered in clinical CT with little count loss due to pile-up.
  •  
4.
  • Bornefalk, Hans, et al. (författare)
  • Photon-counting spectral computed tomography using silicon strip detectors : a feasibility study
  • 2010
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 55:7, s. 1999-2022
  • Tidskriftsartikel (refereegranskat)abstract
    • We show how the spectral imaging framework should be modified to account for a high fraction of Compton interactions in low Z detector materials such as silicon. Using this framework, where deposited energies differ from actual photon energies, we compare the performance of a silicon strip detector, including the influence of scatter inside the detector and charge sharing but disregarding signal pileup, with an ideal energy integrating detector. We show that although the detection efficiency for silicon rapidly drops for the acceleration voltages encountered in clinical computed tomography practice, silicon detectors could perform on a par with ideal energy integrating detectors for routine imaging tasks. The use of spectrally sensitive detectors opens up the possibility for decomposition techniques such as k-edge imaging, and we show that the proposed modification of the spectral imaging framework is beneficial for such imaging tasks.
  •  
5.
  • Chen, Han, 1986-, et al. (författare)
  • Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study
  • 2016
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 61:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We are developing a photon-counting spectral CT detector with small pixel size of 0.40.5 mm2, o ering a potentialadvantage for better visualization of small structures in pediatric patients. The purpose of this study is to determinethe patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imagingand iodinated blood imaging.Cylindrical soft-tissue phantoms of diameters between 10-25 cm were used to mimic patients of di erent ages from 0-15 y. For adipose imaging, a 5-mm-diameter adipose sphere was assumed as an imaging target, while an iodinated bloodsphere of 1 mm in diameter was assumed in the case of iodinated imaging. By applying the geometry of a commercial CTscanner (GE LightSpeed VCT), simulations were carried out to calculate the detectability index,d02, with tube potentialsvarying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index,d02=dose, is maximized. With the assumption that image quality in pediatric imagingis required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected toachieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typicaladult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system.For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and25-cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%,23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25-cm-diameter phantoms,respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated,and the mAs values required to achieve the reference detectability index are 2%, 9%, 37%, and 109% of the adult mAs.The results also indicate that with the use of respective optimal kVps, the photon-counting spectral system o ers up to30% higherd02=dose than the modeled energy-integrating system for adipose imaging, and 70% for iodinated imaging.
  •  
6.
  • Fredenberg, Erik, et al. (författare)
  • Measurement of breast-tissue x-ray attenuation by spectral mammography : solid lesions
  • 2016
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics Publishing (IOPP). - 0031-9155 .- 1361-6560. ; 61:7, s. 2595-2612
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.
  •  
7.
  • Persson, Mats, et al. (författare)
  • Energy-resolved CT imaging with a photon-counting silicon-strip detector
  • 2014
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 59:22, s. 6709-6727
  • Tidskriftsartikel (refereegranskat)abstract
    • Photon-counting detectors are promising candidates for use in the next generation of x-ray computed tomography (CT) scanners. Among the foreseen benefits are higher spatial resolution, better trade-off between noise and dose and energy discriminating capabilities. Silicon is an attractive detector material because of its low cost, mature manufacturing process and high hole mobility. However, it is sometimes overlooked for CT applications because of its low absorption efficiency and high fraction of Compton scatter. The purpose of this work is to demonstrate that silicon is a feasible material for CT detectors by showing energy-resolved CT images acquired with an 80 kVp x-ray tube spectrum using a photon-counting silicon-strip detector with eight energy thresholds developed in our group. We use a single detector module, consisting of a linear array of 50 0.5 x 0.4 mm detector elements, to image a phantom in a table-top lab setup. The phantom consists of a plastic cylinder with circular inserts containing water, fat and aqueous solutions of calcium, iodine and gadolinium, in different concentrations. By using basis material decomposition we obtain water, calcium, iodine and gadolinium basis images and demonstrate that these basis images can be used to separate the different materials in the inserts. We also show results showing that the detector has potential for quantitative measurements of substance concentrations.
  •  
8.
  • Sjölin, Martin, et al. (författare)
  • Improved signal-to-noise ratio for non-perpendicular detection angles in x-ray fluorescence computed tomography (XFCT)
  • 2014
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 59:21, s. 6507-6520
  • Tidskriftsartikel (refereegranskat)abstract
    • The standard imaging setup in x-ray fluorescence computed tomography detects the fluorescence emission at a right angle with respect to the axis of the excitation beam. In this paper we have studied how the detection angle affects the signal-to-noise ratio (S/N), which is a major factor influencing the low-contrast sensitivity of the imaging system. This is done for an imaging setup using a collimated detector and a pencil beam of excitation x-rays. An ideal detection process is simulated for a generalized imaging case with gold/platinum tracers and experimental measurements are performed using a diagnostic x-ray tube. For monochromatic excitation, the results indicate that order-of-magnitude improvements of the S/N can be achieved by optimizing the detection angle. The maximal S/N, when exciting with an energy just above the K-edge, is achieved for large detection angles, i.e. with the detector close to the source. The improvements also transfer to polychromatic excitation sources and the experimental results show up to four-fold improvements of the S/N when changing the detection angle from 90 degrees to 150 degrees. Also, the changes of the S/N behavior when switching the fluorescent tracer is briefly demonstrated. These results suggest that the choice of detection angle should be taken seriously in the design of future XFCT imaging systems.
  •  
9.
  • Tibbelin, Sandra, 1980-, et al. (författare)
  • Simulation of HyperSPECT : a high-resolution small-animal system with in-line x-ray optics
  • 2012
  • Ingår i: Physics in Medicine and Biology. - : IOP Publishing. - 0031-9155 .- 1361-6560. ; 57:6, s. 1617-1629
  • Tidskriftsartikel (refereegranskat)abstract
    • SPECT has become an important tool in pre-clinical applications. Small-animal imaging systems based on the use of one or more pinhole collimators now reach sub-half-mm resolution but unfortunately suffer from a compromise between sensitivity and resolution due to the pinhole collimators. We propose a small-animal SPECT system based not on pinholes but on in-line x-ray optics, which is rare in medical imaging systems for nuclear medicine. The x-ray lenses are optimized for 27 keV for low-energy imaging with iodine-125. We believe that this new system, HyperSPECT, can simultaneously improve on sensitivity and resolution compared to today's state-of-the-art systems. A full three-dimensional simulation of the system has been performed including the prism-array lenses, pre-and post-collimators and scintillator-based detector. Images of capillary phantoms have been reconstructed using an iterative image reconstruction method. Sensitivity was uniformly 0.37% throughout the 1 cm diameter spherical field of view and rod sizes of around 100 mu m diameter were distinguishable in the images of simulated capillary phantoms. These results indicate an increase in resolution by a factor of 5 during a simultaneous increase in sensitivity by a factor of 2 compared to the current state-of-the-art small-animal SPECT systems.
  •  
10.
  • Yveborg, Moa, et al. (författare)
  • Eliminated risk of iodine contrast cancellation with multibin spectral CT
  • 2013
  • Ingår i: Physics in Medicine and Biology. - : Institute of Physics (IOP). - 0031-9155 .- 1361-6560. ; 58:14, s. N201-N209
  • Tidskriftsartikel (refereegranskat)abstract
    • This note compares the extent of contrast cancellation induced by iodinated contrast agents in energy integrating and photon counting multibin CT images. The contrast between a hypodense target and soft tissue is modeled for the two systems for a range of iodine concentrations and tube voltages. In energy integrating systems, we show that the contrast vanishes for low concentrations of iodine whereas the same effect is not seen in multibin systems. We conclude that it is the ability of multibin systems to apply weighting schemes post-acquisition that allows the operator to eliminate the risk of contrast cancellation between iodinated targets and the background.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy