SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 0428 ;pers:(Pedersen O)"

Sökning: L773:1432 0428 > Pedersen O

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albrechtsen, A., et al. (författare)
  • Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 298-310
  • Tidskriftsartikel (refereegranskat)abstract
    • Human complex metabolic traits are in part regulated by genetic determinants. Here we applied exome sequencing to identify novel associations of coding polymorphisms at minor allele frequencies (MAFs) > 1% with common metabolic phenotypes. The study comprised three stages. We performed medium-depth (8x) whole exome sequencing in 1,000 cases with type 2 diabetes, BMI > 27.5 kg/m(2) and hypertension and in 1,000 controls (stage 1). We selected 16,192 polymorphisms nominally associated (p < 0.05) with case-control status, from four selected annotation categories or from loci reported to associate with metabolic traits. These variants were genotyped in 15,989 Danes to search for association with 12 metabolic phenotypes (stage 2). In stage 3, polymorphisms showing potential associations were genotyped in a further 63,896 Europeans. Exome sequencing identified 70,182 polymorphisms with MAF > 1%. In stage 2 we identified 51 potential associations with one or more of eight metabolic phenotypes covered by 45 unique polymorphisms. In meta-analyses of stage 2 and stage 3 results, we demonstrated robust associations for coding polymorphisms in CD300LG (fasting HDL-cholesterol: MAF 3.5%, p = 8.5 x 10(-14)), COBLL1 (type 2 diabetes: MAF 12.5%, OR 0.88, p = 1.2 x 10(-11)) and MACF1 (type 2 diabetes: MAF 23.4%, OR 1.10, p = 8.2 x 10(-10)). We applied exome sequencing as a basis for finding genetic determinants of metabolic traits and show the existence of low-frequency and common coding polymorphisms with impact on common metabolic traits. Based on our study, coding polymorphisms with MAF above 1% do not seem to have particularly high effect sizes on the measured metabolic traits.
  •  
2.
  • Allin, K. H., et al. (författare)
  • Aberrant intestinal microbiota in individuals with prediabetes
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:4, s. 810-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1-7.0 mmol/l or HbA(1c) of 42-48 mmol/mol [6.0-6.5%]) and a range of clinical biomarkers of poor metabolic health. Methods In the present case-control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age-and sex-matched individuals with normal glucose regulation. Results We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was decreased (mean log(2) fold change -0.64 (SEM 0.23), p(adj) = 0.0497), whereas the abundances of Dorea, [ Ruminococcus], Sutterella and Streptococcus were increased (mean log(2) fold change 0.51 (SEM 0.12), p(adj) = 5 x 10(-4); 0.51 (SEM 0.11), p(adj) = 1 x 10-4; 0.60 (SEM 0.21), p(adj) = 0.0497; and 0.92 (SEM0.21), padj = 4 x 10(-4), respectively). The two OTUs that differed the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower abundance among individuals with prediabetes (mean log(2) fold change -1.74 (SEM0.41), p(adj) = 2 x 10(-3) and -1.65 (SEM0.34), p(adj) = 4 x 10(-4), respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice. Conclusions/interpretation Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation.
  •  
3.
  • Boesgaard, T. W., et al. (författare)
  • The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients--the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:5, s. 816-20
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered insulin release in response to intravenous and oral glucose loads in non-diabetic offspring of type 2 diabetic patients. METHODS: We genotyped SLC30A8 rs13266634 in 846 non-diabetic offspring of type 2 diabetic patients from five different white populations: Danish (n = 271), Finnish (n = 217), German (n = 149), Italian (n = 109) and Swedish (n = 100). Participants were subjected to both IVGTTs and OGTTs, and measurements of insulin sensitivity. RESULTS: Homozygous carriers of the major type 2 diabetes C risk-allele showed a 19% decrease in first-phase insulin release (0-10 min) measured during the IVGTT (CC 3,624 +/- 3,197; CT 3,763 +/- 2,674; TT 4,478 +/- 3,032 pmol l(-1) min(-1), mean +/- SD; p = 0.007). We found no significant genotype effect on insulin release measured during the OGTT or on estimates of insulin sensitivity. CONCLUSIONS/INTERPRETATION: Of European non-diabetic offspring of type 2 diabetes patients, 46% are homozygous carriers of the Arg325Trp polymorphism in ZnT-8, which is known to associate with type 2 diabetes. These diabetes-prone offspring are characterised by a 19% decrease in first-phase insulin release following an intravenous glucose load, suggesting a role for this variant in the pathogenesis of pancreatic beta cell dysfunction.
  •  
4.
  •  
5.
  •  
6.
  • Hribal, M. L., et al. (författare)
  • Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B
  • 2011
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 54:4, s. 795-802
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry. METHODS: Sample 1 comprised 845 non-diabetic offspring of type 2 diabetes patients recruited in five European centres participating in the EUGENE2 study. Samples 2 and 3 comprised, respectively, 864 and 524 Italian non-diabetic participants. All individuals underwent an OGTT. Screening for the rs10811661 polymorphism was performed using a TaqMan allelic discrimination assay. RESULTS: The rs10811661 polymorphism did not show a significant association with age, BMI and insulin sensitivity. Participants carrying the TT genotype showed a significant reduction in insulin release, measured by an OGTT-derived index, compared with carriers of the C allele, in the three samples. When these results were pooled with those of three published studies, and meta-analysed with a random-effects model, the T allele was significantly associated with reduced insulin secretion (-35.09 [95% CI 14.68-55.52], p = 0.0008 for CC+CT vs TT; and -29.45 [95% CI 9.51-49.38], p = 0.0038, for the additive model). In addition, in our three samples, participants carrying the TT genotype exhibited an increased risk for impaired glucose tolerance (IGT) compared with carriers of the C allele (OR 1.55 [95% CI 1.20-1.95] for the meta-analysis of the three samples). CONCLUSIONS/INTERPRETATION: Our data, together with the meta-analysis of previously published studies, show that the rs10811661 polymorphism is associated with impaired insulin release and IGT, suggesting that this variant may contribute to type 2 diabetes by affecting beta cell function.
  •  
7.
  • Koivula, Robert W., et al. (författare)
  • The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes : an IMI DIRECT study
  • 2020
  • Ingår i: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 63:4, s. 744-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.
  •  
8.
  • Laakso, M., et al. (författare)
  • Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:3, s. 502-11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic patients from five different European Centres (Denmark, Finland, Germany, Italy and Sweden) were examined with regard to insulin sensitivity (euglycaemic clamps), insulin release (IVGTT) and glucose tolerance (OGTT). The levels of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) were measured during the OGTT in 278 individuals. RESULTS: Normal glucose tolerance was found in 634 participants, while 110 had isolated IFG, 86 had isolated IGT and 44 had both IFG and IGT, i.e. about 28% had a form of reduced glucose tolerance. Participants with isolated IFG had lower glucose-corrected first-phase (0-10 min) and higher second-phase insulin release (10-60 min) during the IVGTT, while insulin sensitivity was reduced in all groups with abnormal glucose tolerance. Similarly, GLP-1 but not GIP levels were reduced in individuals with abnormal glucose tolerance. CONCLUSIONS/INTERPRETATION: The primary mechanism leading to hyperglycaemia in participants with isolated IFG is likely to be impaired basal and first-phase insulin secretion, whereas in isolated IGT the primary mechanism leading to postglucose load hyperglycaemia is insulin resistance. Reduced GLP-1 levels were seen in all groups with abnormal glucose tolerance and were unrelated to the insulin release pattern during an IVGTT.
  •  
9.
  • Langenberg, C., et al. (författare)
  • Design and cohort description of the InterAct Project : an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study
  • 2011
  • Ingår i: Diabetologia. - : Springer. - 0012-186X .- 1432-0428. ; 54:9, s. 2272-2282
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying gene-lifestyle interaction may help to identify lifestyle factors that modify genetic susceptibility and uncover genetic loci exerting important subgroup effects. Adequately powered studies with prospective, unbiased, standardised assessment of key behavioural factors for gene-lifestyle studies are lacking. This case-cohort study aims to investigate how genetic and potentially modifiable lifestyle and behavioural factors, particularly diet and physical activity, interact in their influence on the risk of developing type 2 diabetes. Incident cases of type 2 diabetes occurring in European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts between 1991 and 2007 from eight of the ten EPIC countries were ascertained and verified. Prentice-weighted Cox regression and random-effects meta-analyses were used to investigate differences in diabetes incidence by age and sex. A total of 12,403 verified incident cases of type 2 diabetes occurred during 3.99 million person-years of follow-up of 340,234 EPIC participants eligible for InterAct. We defined a centre-stratified subcohort of 16,154 individuals for comparative analyses. Individuals with incident diabetes who were randomly selected into the subcohort (n = 778) were included as cases in the analyses. All prevalent diabetes cases were excluded from the study. InterAct cases were followed-up for an average of 6.9 years; 49.7% were men. Mean baseline age and age at diagnosis were 55.6 and 62.5 years, mean BMI and waist circumference values were 29.4 kg/m(2) and 102.7 cm in men, and 30.1 kg/m(2) and 92.8 cm in women, respectively. Risk of type 2 diabetes increased linearly with age, with an overall HR of 1.56 (95% CI 1.48-1.64) for a 10 year age difference, adjusted for sex. A male excess in the risk of incident diabetes was consistently observed across all countries, with a pooled HR of 1.51 (95% CI 1.39-1.64), adjusted for age. InterAct is a large, well-powered, prospective study that will inform our understanding of the interplay between genes and lifestyle factors on the risk of type 2 diabetes development.
  •  
10.
  • Ling, Charlotte, et al. (författare)
  • Impact of the peroxisome proliferator activated receptor-gamma coactivator-1 beta (PGC-1 beta) Ala203Pro polymorphism on in vivo metabolism, PGC-1 beta expression and fibre type composition in human skeletal muscle
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 50:8, s. 1615-1620
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Peroxisome proliferator activated receptor-gamma coactivator-lp (PGC-1 beta, also known as PPARGCIB) expression is reduced in skeletal muscle from patients with type 2 diabetes mellitus and in elderly subjects. Ala203Pro, a common variant in the PGC-1 beta gene is associated with obesity. The aim of this study was to investigate whether the PGC-1 beta Ala203Pro polymorphism influences the age-related decline in skeletal muscle PGC-1 beta expression, in vivo metabolism and markers for muscle fibre type composition. Materials and methods The PGC-1 beta Ala203Pro polymerphism was genotyped in 110 young (age 28.0 +/- 1.9 years) and 86 elderly (age 62.4 +/- 2.0 years) twins and related to muscle PGC-1 beta expression, in vivo metabolism and markers for fibre type composition. Results Insulin-stimulated non-oxidative glucose metabolism (NOGM; p=0.025) and glycolytic flux rate (GF; p=0.026) were reduced in young Ala/Ala carriers compared with carriers of a 203Pro allele. In addition, a regression analysis, correcting for covariates, showed that the PGC-1 beta 203Pro allele was positively related to insulin-stimulated NOGM and GF in the young twins. While muscle expression of PGC-1 beta was reduced in elderly compared with young carriers of the Ala/Ala genotype (p <= 0.001), there was no significant age-related decline in PGC-1 beta expression in carriers of the 203Pro allele (p >= 0.4). However, a regression analysis, correcting for covariates, showed that only age was significantly related to muscle PGC-1 beta expression. Finally, PGC-1 beta expression correlated positively with markers for oxidative fibres in human muscle. Conclusions/interpretation This study suggests that young carriers of a PGC-1 beta 203Pro allele have enhanced insulin-stimulated glucose metabolism and may be protected against an age-related decline in PGC-1 beta expression in muscle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy