SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 0428 OR L773:0012 186X ;lar1:(gu)"

Sökning: L773:1432 0428 OR L773:0012 186X > Göteborgs universitet

  • Resultat 1-10 av 93
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abadpour, S., et al. (författare)
  • Inhibition of the prostaglandin D-2-GPR44/DP2 axis improves human islet survival and function
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63, s. 1355-1367
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D-2 (PGD(2)) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. Methods Human islets were exposed to PGD(2) or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1 beta. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. Results PGD(2) or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1 beta in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3 beta signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-alpha and growth-regulated oncogene-alpha/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. Conclusions/interpretation Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.
  •  
2.
  • Adiels, Martin, 1976, et al. (författare)
  • Acute suppression of VLDL(1) secretion rate by insulin is associated with hepatic fat content and insulin resistance
  • 2007
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 50:11, s. 2356-2365
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: Overproduction of VLDL(1) seems to be the central pathophysiological feature of the dyslipidaemia associated with type 2 diabetes. We explored the relationship between liver fat and suppression of VLDL(1) production by insulin in participants with a broad range of liver fat content. METHODS: A multicompartmental model was used to determine the kinetic parameters of apolipoprotein B and TG in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol during a hyperinsulinaemic-euglycaemic clamp in 20 male participants: eight with type 2 diabetes and 12 control volunteers. The participants were divided into two groups with low or high liver fat. All participants with diabetes were in the high liver-fat group. RESULTS: The results showed a rapid drop in VLDL(1)-apolipoprotein B and -triacylglycerol secretion in participants with low liver fat during the insulin infusion. In contrast, participants with high liver fat showed no significant change in VLDL(1) secretion. The VLDL(1) suppression following insulin infusion correlated with the suppression of NEFA, and the ability of insulin to suppress the plasma NEFA was impaired in participants with high liver fat. A novel finding was an inverse response between VLDL(1) and VLDL(2) secretion in participants with low liver fat: VLDL(1) secretion decreased acutely after insulin infusion whereas VLDL(2) secretion increased. CONCLUSIONS/INTERPRETATION: Insulin downregulates VLDL(1) secretion and increases VLDL(2) secretion in participants with low liver fat but fails to suppress VLDL(1) secretion in participants with high liver fat, resulting in overproduction of VLDL(1). Thus, liver fat is associated with lack of VLDL(1) suppression in response to insulin.
  •  
3.
  • Adiels, Martin, 1976, et al. (författare)
  • Overproduction of large VLDL particles is driven by increased liver fat content in man
  • 2006
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 49:4, s. 755-65
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: We determined whether hepatic fat content and plasma adiponectin concentration regulate VLDL(1) production. METHODS: A multicompartment model was used to simultaneously determine the kinetic parameters of triglycerides (TGs) and apolipoprotein B (ApoB) in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol in ten men with type 2 diabetes and in 18 non-diabetic men. Liver fat content was determined by proton spectroscopy and intra-abdominal fat content by MRI. RESULTS: Univariate regression analysis showed that liver fat content, intra-abdominal fat volume, plasma glucose, insulin and HOMA-IR (homeostasis model assessment of insulin resistance) correlated with VLDL(1) TG and ApoB production. However, only liver fat and plasma glucose were significant in multiple regression models, emphasising the critical role of substrate fluxes and lipid availability in the liver as the driving force for overproduction of VLDL(1) in subjects with type 2 diabetes. Despite negative correlations with fasting TG levels, liver fat content, and VLDL(1) TG and ApoB pool sizes, adiponectin was not linked to VLDL(1) TG or ApoB production and thus was not a predictor of VLDL(1) production. However, adiponectin correlated negatively with the removal rates of VLDL(1) TG and ApoB. CONCLUSIONS/INTERPRETATION: We propose that the metabolic effect of insulin resistance, partly mediated by depressed plasma adiponectin levels, increases fatty acid flux from adipose tissue to the liver and induces the accumulation of fat in the liver. Elevated plasma glucose can further increase hepatic fat content through multiple pathways, resulting in overproduction of VLDL(1) particles and leading to the characteristic dyslipidaemia associated with type 2 diabetes.
  •  
4.
  • Allin, K. H., et al. (författare)
  • Aberrant intestinal microbiota in individuals with prediabetes
  • 2018
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 61:4, s. 810-820
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1-7.0 mmol/l or HbA(1c) of 42-48 mmol/mol [6.0-6.5%]) and a range of clinical biomarkers of poor metabolic health. Methods In the present case-control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age-and sex-matched individuals with normal glucose regulation. Results We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was decreased (mean log(2) fold change -0.64 (SEM 0.23), p(adj) = 0.0497), whereas the abundances of Dorea, [ Ruminococcus], Sutterella and Streptococcus were increased (mean log(2) fold change 0.51 (SEM 0.12), p(adj) = 5 x 10(-4); 0.51 (SEM 0.11), p(adj) = 1 x 10-4; 0.60 (SEM 0.21), p(adj) = 0.0497; and 0.92 (SEM0.21), padj = 4 x 10(-4), respectively). The two OTUs that differed the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower abundance among individuals with prediabetes (mean log(2) fold change -1.74 (SEM0.41), p(adj) = 2 x 10(-3) and -1.65 (SEM0.34), p(adj) = 4 x 10(-4), respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice. Conclusions/interpretation Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation.
  •  
5.
  • Amrutkar, Manoj, et al. (författare)
  • Protein kinase STK25 controls lipid partitioning in hepatocytes and correlates with liver fat content in humans
  • 2016
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 59:2, s. 341-353
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis Type 2 diabetes is closely associated with pathological lipid accumulation in the liver, which is suggested to actively contribute to the development of insulin resistance. We recently identified serine/threonine protein kinase 25 (STK25) as a regulator of liver steatosis, whole-body glucose tolerance and insulin sensitivity in a mouse model system. The aim of this study was to assess the role of STK25 in the control of lipid metabolism in human liver. Methods Intracellular fat deposition, lipid metabolism and insulin sensitivity were studied in immortalised human hepatocytes (IHHs) and HepG2 hepatocellular carcinoma cells in which STK25 was overexpressed or knocked down by small interfering RNA. The association between STK25 mRNA expression in human liver biopsies and hepatic fat content was analysed. Results Overexpression of STK25 in IHH and HepG2 cells enhanced lipid deposition by suppressing beta-oxidation and triacylglycerol (TAG) secretion, while increasing lipid synthesis. Conversely, knockdown of STK25 attenuated lipid accumulation by stimulating beta-oxidation and TAG secretion, while inhibiting lipid synthesis. Furthermore, TAG hydrolase activity was repressed in hepatocytes overexpressing STK25 and reciprocally increased in cells with STK25 knockdown. Insulin sensitivity was reduced in STK25-overexpressing cells and enhanced in STK25-deficient hepatocytes. We also found a statistically significant positive correlation between STK25 mRNA expression in human liver biopsies and hepatic fat content. Conclusions/interpretation Our data suggest that STK25 regulates lipid partitioning in human liver cells by controlling TAG synthesis as well as lipolytic activity and thereby NEFA release from lipid droplets for beta-oxidation and TAG secretion. Our findings highlight STK25 as a potential drug target for the prevention and treatment of type 2 diabetes.
  •  
6.
  • Andersen, Caroline, et al. (författare)
  • Worse glycaemic control in LADA patients than in those with type 2 diabetes, despite a longer time on insulin therapy
  • 2013
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 56:2, s. 252-258
  • Tidskriftsartikel (refereegranskat)abstract
    • Our aim was to study whether glycaemic control differs between individuals with latent autoimmune diabetes in adults (LADA) and patients with type 2 diabetes, and whether it is influenced by time on insulin therapy. We performed a retrospective study of 372 patients with LADA (205 men and 167 women; median age 54 years, range 35-80 years) from Swedish cohorts from SkAyenne (n = 272) and Vasterbotten (n = 100). Age- and sex-matched patients with type 2 diabetes were included as controls. Data on the use of oral hypoglycaemic agents (OHAs), insulin and insulin-OHA combination therapy was retrieved from the medical records. Poor glycaemic control was defined as HbA(1c) a parts per thousand yen7.0% (a parts per thousand yen53 mmol/mol) at follow-up. The individuals with LADA and with type 2 diabetes were followed for an average of 107 months. LADA patients were leaner than type 2 diabetes patients at diagnosis (BMI 27.7 vs 31.0 kg/m(2); p < 0.001) and follow-up (BMI 27.9 vs 30.2 kg/m(2); p < 0.001). Patients with LADA had been treated with insulin for longer than those with type 2 diabetes (53.3 vs 28.8 months; p < 0.001). There was no significant difference between the patient groups with regard to poor glycaemic control at diagnosis, but more patients with LADA (67.8%) than type 2 diabetes patients (53.0%; p < 0.001) had poor glycaemic control at follow-up. Patients with LADA had worse glycaemic control at follow-up compared with participants with type 2 diabetes (OR = 1.8, 95% CI 1.2, 2.7), adjusted for age at diagnosis, HbA(1c), BMI at diagnosis, follow-up time and duration of insulin treatment. Individuals with LADA have worse glycaemic control than patients with type 2 diabetes despite a longer time on insulin therapy.
  •  
7.
  •  
8.
  • Boesgaard, T. W., et al. (författare)
  • The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients--the EUGENE2 study
  • 2008
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 51:5, s. 816-20
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered insulin release in response to intravenous and oral glucose loads in non-diabetic offspring of type 2 diabetic patients. METHODS: We genotyped SLC30A8 rs13266634 in 846 non-diabetic offspring of type 2 diabetic patients from five different white populations: Danish (n = 271), Finnish (n = 217), German (n = 149), Italian (n = 109) and Swedish (n = 100). Participants were subjected to both IVGTTs and OGTTs, and measurements of insulin sensitivity. RESULTS: Homozygous carriers of the major type 2 diabetes C risk-allele showed a 19% decrease in first-phase insulin release (0-10 min) measured during the IVGTT (CC 3,624 +/- 3,197; CT 3,763 +/- 2,674; TT 4,478 +/- 3,032 pmol l(-1) min(-1), mean +/- SD; p = 0.007). We found no significant genotype effect on insulin release measured during the OGTT or on estimates of insulin sensitivity. CONCLUSIONS/INTERPRETATION: Of European non-diabetic offspring of type 2 diabetes patients, 46% are homozygous carriers of the Arg325Trp polymorphism in ZnT-8, which is known to associate with type 2 diabetes. These diabetes-prone offspring are characterised by a 19% decrease in first-phase insulin release following an intravenous glucose load, suggesting a role for this variant in the pathogenesis of pancreatic beta cell dysfunction.
  •  
9.
  • Buschard, K., et al. (författare)
  • Involvement of sulfatide in beta cells and type 1 and type 2 diabetes
  • 2005
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 48:10, s. 1957-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian tissues express beta-isoforms of glycosphingolipids and, among these, sulfatide (sulphated galactosylceramide) is present in the beta cells, and it is here that the short fatty acid chain (C16) isoform is predominately found. In vitro studies have shown that sulfatide preserves insulin crystals and facilitates insulin monomerisation under certain biochemical conditions. It also activates beta cell potassium channels and moderates insulin secretion. Anti-sulfatide antibodies are seen in type 1 diabetes, and immunological presentation of glycosphingolipids by the non-classical CD1 molecules has recently been reported. It is via this mechanism that alpha-galactosylceramide and sulfatide are able to influence the innate immune system and inhibit autoimmunity, possibly through regulatory natural killer T cells. Administration of sulfatide substantially reduces the incidence of diabetes in non-obese diabetic mice and prevents antigen-induced experimental autoimmune encephalomyelitis in wild-type mice. Sulfatide has specific anti-inflammatory properties, increasing the number of CD3+CD25+ regulatory T cells and reducing production of several cytokines, including TNF-alpha. Patients with type 2 diabetes have low serum concentrations of sulfatide, and some animal models of type 2 diabetes have low pancreatic expression of C16:0 sulfatide; administration of this increases insulin secretion and improves first-phase insulin response in Zucker fatty rats. Glycosphingolipids in general, and sulfatide in particular, appear relevant to both type 1 and type 2 diabetes.
  •  
10.
  • Byndloss, Mariana, et al. (författare)
  • The gut microbiota and diabetes: research, translation, and clinical applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum
  • 2024
  • Ingår i: DIABETOLOGIA. - 0012-186X .- 1432-0428.
  • Forskningsöversikt (refereegranskat)abstract
    • This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 93
Typ av publikation
tidskriftsartikel (88)
forskningsöversikt (4)
konferensbidrag (1)
Typ av innehåll
refereegranskat (90)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Smith, Ulf, 1943 (23)
Gudbjörnsdottir, Sof ... (15)
Eliasson, Björn, 195 ... (14)
Svensson, Ann-Marie, ... (8)
Jansson, Per-Anders, ... (7)
Borén, Jan, 1963 (7)
visa fler...
Lind, Marcus, 1976 (7)
Eeg-Olofsson, Katari ... (6)
Rosengren, Annika, 1 ... (5)
Svensson, A. M. (5)
Adiels, Martin, 1976 (5)
Hammarstedt, Ann, 19 ... (5)
Franzén, Stefan, 196 ... (4)
Groop, Leif (4)
Adolfsson, Peter, 19 ... (4)
Cederholm, Jan (4)
Sattar, N. (4)
Laakso, M. (4)
Hansen, T. (4)
Pedersen, O. (4)
Cansby, Emmelie, 198 ... (4)
Taskinen, M. R. (3)
Rawshani, Araz, 1986 (3)
Zethelius, Björn (3)
Fagerberg, Björn, 19 ... (3)
Ståhlman, Marcus, 19 ... (3)
Åkesson, Karin (3)
Stancakova, A. (3)
Korsgren, Olle (2)
Bäckhed, Fredrik, 19 ... (2)
Franzen, S. (2)
Olofsson, Sven-Olof, ... (2)
Packard, C. (2)
Caslake, M. J. (2)
Westerbacka, J. (2)
Soro-Paavonen, A. (2)
Vehkavaara, S. (2)
Yki-Jarvinen, H. (2)
Sihlbom, Carina, 197 ... (2)
Ohlsson, Claes, 1965 (2)
Riddell, M. C. (2)
Fournier, P. A. (2)
Zaharieva, D. P. (2)
Moser, O. (2)
Orho-Melander, Marju (2)
Holst, J J (2)
Nyström, Lennarth (2)
Amrutkar, Manoj (2)
Chursa, Urszula (2)
Nuñez Durán, Esther (2)
visa färre...
Lärosäte
Karolinska Institutet (13)
Lunds universitet (11)
Uppsala universitet (9)
Chalmers tekniska högskola (9)
Linköpings universitet (6)
visa fler...
Umeå universitet (5)
Örebro universitet (2)
Högskolan i Halmstad (1)
Mälardalens universitet (1)
visa färre...
Språk
Engelska (93)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (79)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy