SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1432 0533 ;pers:(Ingelsson Martin)"

Sökning: L773:1432 0533 > Ingelsson Martin

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ingelsson, Martin, et al. (författare)
  • Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains
  • 2007
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 114:5, s. 471-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Some cases of familial frontotemporal dementia (FTD) leading to frontotemporal lobar degeneration (FTLD) are caused by mutations in tau on chromosome 17 (FTDP-17). Certain mutations alter the ratio between four (4R tau) and three (3R tau) repeat tau isoforms whereas cases with progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) mainly have 4R tau brain pathology. We assessed tau mRNA and protein levels in frontal cortex from 15 sporadic FTLD, 21 PSP, 5 CBD, 15 Alzheimer’s disease (AD) and 16 control brains. Moreover, we investigated the disease association and possible tau splicing effects of the tau H1 haplotype. Cases with FTLD and PSP had lower tau mRNA levels than control brains. When analyzing 4R tau and 3R tau mRNA separately, control subjects displayed a 4R tau/3R tau ratio of 0.48. Surprisingly, FTLD brains displayed a more elevated ratio (1.32) than PSP brains (1.12). Also, several FTLD and PSP cases had higher 4R tau/3R tau mRNA than FTDP-17 cases, included as reference tissues, and the ratio increase was seen regardless of underlying histopathology, i.e. both for tau-positive and tau-negative FTLD cases. Furthermore, total tau protein levels were slightly decreased in both FTLD and AD as compared to control subjects. Finally, we confirmed the association of tau H1 with PSP, but could not find any haplotype-related effect on tau exon 10 splicing. In conclusion, we demonstrated increased but largely variable 4R tau/3R tau mRNA ratios in FTLD and PSP cases, suggesting heterogeneous pathophysiological processes within these disorders.
  •  
2.
  • Ingelsson, Martin, et al. (författare)
  • No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer's disease brain
  • 2006
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 112:4, s. 439-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Defective splicing of tau mRNA, promoting a shift between tau isoforms with (4R tau) and without (3R tau) exon 10, is believed to be a pathological consequence of certain tau mutations causing frontotemporal dementia. By assessing protein and mRNA levels of 4R tau and 3R tau in 27 AD and 20 control temporal cortex, we investigated whether altered tau splicing is a feature also in Alzheimer's disease (AD). However, apart from an expected increase of sarcosyl-insoluble tau in AD, there were no significant differences between the groups. Next, by laser-capture microscopy and quantitative PCR, we separately analyzed CA1 hippocampal neurons with and without neurofibrillary pathology from six of the AD and seven of the control brains. No statistically significant differences in 4R tau/3R tau mRNA were found between the different subgroups. Moreover, we confirmed the absence of significant ratio differences in a second data set with laser-captured entorhinal cortex neurons from four AD and four control brains. Finally, the 4R tau/3R tau ratio in CA1 neurons was roughly half of the ratio in temporal cortex, indicating region-specific differences in tau mRNA splicing. In conclusion, this study indicated region-specific and possibly cell-type-specific tau splicing but did not lend any support to overt changes in alternative splicing of tau exon 10 being an underlying factor in AD pathogenesis.
  •  
3.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
4.
  • Lau, Heather H. C., et al. (författare)
  • The existence of A beta strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease
  • 2021
  • Ingår i: Acta Neuropathologica. - : Springer. - 0001-6322 .- 1432-0533. ; 142:1, s. 17-39
  • Forskningsöversikt (refereegranskat)abstract
    • Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of A beta peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that A beta, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of A beta aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that A beta can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.
  •  
5.
  • Reyes, Juan, et al. (författare)
  • Binding of alfa-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes
  • 2019
  • Ingår i: Acta Neuropathologica. - : SPRINGER. - 0001-6322 .- 1432-0533. ; 138:1, s. 23-47
  • Tidskriftsartikel (refereegranskat)abstract
    • The intercellular transfer of alpha-synuclein (-syn) has been implicated in the progression of Parkinson's disease (PD) and multiple system atrophy (MSA). The cellular mechanisms underlying this process are now beginning to be elucidated. In this study, we demonstrate that the gap junction protein connexin-32 (Cx32) is centrally involved in the preferential uptake of -syn oligomeric assemblies (o-syn) in neurons and oligodendrocytes. In vitro, we demonstrate a clear correlation between Cx32 expression and o-syn uptake. Pharmacological and genetic strategies targeting Cx32 successfully blocked o-syn uptake. In cellular and transgenic mice modeling PD and MSA, we observed significant upregulation of Cx32 which correlates with -syn accumulation. Notably, we could alsodemonstrate a direct interaction between -syn and Cx32 in two out of four human PD cases that was absent in all four age-matched controls. These data are suggestive of a link between Cx32 and PD pathophysiology. Collectively, our results provide compelling evidence for Cx32 as a novel target for therapeutic intervention in PD and related -synucleinopathies.
  •  
6.
  • Sardar Sinha, Maitrayee, et al. (författare)
  • Alzheimer's disease pathology propagation by exosomes containing toxic amyloid-beta oligomers
  • 2018
  • Ingår i: Acta Neuropathologica. - : SPRINGER. - 0001-6322 .- 1432-0533. ; 136:1, s. 41-56
  • Tidskriftsartikel (refereegranskat)abstract
    • The gradual deterioration of cognitive functions in Alzheimer's disease is paralleled by a hierarchical progression of amyloid-beta and tau brain pathology. Recent findings indicate that toxic oligomers of amyloid-beta may cause propagation of pathology in a prion-like manner, although the underlying mechanisms are incompletely understood. Here we show that small extracellular vesicles, exosomes, from Alzheimer patients' brains contain increased levels of amyloid-beta oligomers and can act as vehicles for the neuron-to-neuron transfer of such toxic species in recipient neurons in culture. Moreover, blocking the formation, secretion or uptake of exosomes was found to reduce both the spread of oligomers and the related toxicity. Taken together, our results imply that exosomes are centrally involved in Alzheimer's disease and that they could serve as targets for development of new diagnostic and therapeutic principles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy