SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2083 "

Sökning: L773:1460 2083

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Acevedo, Nathalie, et al. (författare)
  • Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 24:3, s. 90-875
  • Tidskriftsartikel (refereegranskat)abstract
    • Single-nucleotide polymorphisms (SNPs) in GSDMB (Gasdermin B) and ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) are strongly associated with childhood asthma, but the molecular alterations contributing to disease remain unknown. We investigated the effects of asthma-associated SNPs on DNA methylation and mRNA levels of GSDMB and ORMDL3. Genetic association between GSDMB/ORMDL3 and physician-diagnosed childhood asthma was confirmed in the Swedish birth-cohort BAMSE. CpG-site SNPs (rs7216389 and rs4065275) showed differences in DNA methylation depending on carrier status of the risk alleles, and were significantly associated with methylation levels in two CpG sites in the 5' UTR (untranslated region) of ORMDL3. In the Swedish Search study, we found significant differences in DNA methylation between asthmatics and controls in five CpG sites; after adjusting for lymphocyte and neutrophil cell counts, three remained significant: one in IKZF3 [IKAROS family zinc finger 3 (Aiolos); cg16293631] and two in the CpG island (CGI) of ORMDL3 (cg02305874 and cg16638648). Also, cg16293631 and cg02305874 correlated with mRNA levels of ORMDL3. The association between methylation and asthma was independent of the genotype in rs7216389, rs4065275 and rs12603332. Both SNPs and CpG sites showed significant associations with ORMDL3 mRNA levels. SNPs influenced expression independently of methylation, and the residual association between methylation and expression was not mediated by these SNPs. We found a differentially methylated region in the CGI shore of ORMDL3 with six CpG sites less methylated in CD8(+) T-cells. In summary, this study supports that there are differences in DNA methylation at this locus between asthmatics and controls; and both SNPs and CpG sites are independently associated with ORMDL3 expression.
  •  
3.
  • Adhikari, Deepak, et al. (författare)
  • Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes
  • 2012
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; , s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Mammalian oocytes are arrested at the prophase of meiosis I during fetal or postnatal development, and the meiosis is resumed by the preovulatory surge of luteinizing hormone. The in vivo functional roles of cyclin-dependent kinases (Cdks) during the resumption of meiosis in mammalian oocytes are largely unknown. Previous studies have shown that deletions of Cdk3, Cdk4 or Cdk6 in mice result in viable animals with normal oocyte maturation, indicating that these Cdks are not essential for the meiotic maturation of oocytes. In addition, conventional knockout of Cdk1 and Cdk2 leads to embryonic lethality and postnatal follicular depletion, respectively, making it impossible to study the functions of Cdk1 and Cdk2 in oocyte meiosis. In this study, we generated conditional knockout mice with oocyte-specific deletions of Cdk1 and Cdk2. We showed that the lack of Cdk1, but not of Cdk2, leads to female infertility due to a failure of the resumption of meiosis in the oocyte. Re-introduction of Cdk1 mRNA into Cdk1-null oocytes largely resumed meiosis. Thus, Cdk1 is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. We also found that Cdk1 maintains the phosphorylation status of protein phosphatase 1 and lamin A/C in oocytes in order for meiosis resumption to occur.
  •  
4.
  • Adhikari, Deepak, et al. (författare)
  • Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles
  • 2010
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 19:3, s. 397-410
  • Tidskriftsartikel (refereegranskat)abstract
    • To maintain the female reproductive lifespan, the majority of ovarian primordial follicles are preserved in a quiescent state in order to provide ova for later reproductive life. However, the molecular mechanism that maintains the long quiescence of primordial follicles is poorly understood. Here we provide genetic evidence to show that the tumor suppressor tuberous sclerosis complex 1 (Tsc1), which negatively regulates mammalian target of rapamycin complex 1 (mTORC1), functions in oocytes to maintain the quiescence of primordial follicles. In mutant mice lacking the Tsc1 gene in oocytes, the entire pool of primordial follicles is activated prematurely due to elevated mTORC1 activity in the oocyte, ending up with follicular depletion in early adulthood and causing premature ovarian failure (POF). We further show that maintenance of the quiescence of primordial follicles requires synergistic, collaborative functioning of both Tsc and PTEN (phosphatase and tensin homolog deleted on chromosome 10) and that these two molecules suppress follicular activation through distinct ways. Our results suggest that Tsc/mTORC1 signaling and PTEN/PI3K (phosphatidylinositol 3 kinase) signaling synergistically regulate the dormancy and activation of primordial follicles, and together ensure the proper length of female reproductive life. Deregulation of these signaling pathways in oocytes results in pathological conditions of the ovary, including POF and infertility.
  •  
5.
  • Aguila, Monica, et al. (författare)
  • AAV-mediated ERdj5 overexpression protects against P23H rhodopsin toxicity
  • 2020
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 29:8, s. 1310-1318
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhodopsin misfolding caused by the P23H mutation is a major cause of autosomal dominant retinitis pigmentosa (adRP). To date, there are no effective treatments for adRP. The BiP co-chaperone and reductase ERdj5 (DNAJC10) is part of the endoplasmic reticulum (ER) quality control machinery, and previous studies have shown that overexpression of ERdj5 in vitro enhanced the degradation of P23H rhodopsin, whereas knockdown of ERdj5 increased P23H rhodopsin ER retention and aggregation. Here, we investigated the role of ERdj5 in photoreceptor homeostasis in vivo by using an Erdj5 knockout mouse crossed with the P23H knock-in mouse and by adeno-associated viral (AAV) vector-mediated gene augmentation of ERdj5 in P23H-3 rats. Electroretinogram (ERG) and optical coherence tomography of Erdj5(-/-) and P23H(+/-):Erdj5(-/-) mice showed no effect of ERdj5 ablation on retinal function or photoreceptor survival. Rhodopsin levels and localization were similar to those of control animals at a range of time points. By contrast, when AAV2/8-ERdj5-HA was subretinally injected into P23H-3 rats, analysis of the full-field ERG suggested that overexpression of ERdj5 reduced visual function loss 10 weeks post-injection (PI). This correlated with a significant preservation of photoreceptor cells at 4 and 10 weeks PI. Assessment of the outer nuclear layer (ONL) morphology showed preserved ONL thickness and reduced rhodopsin retention in the ONL in the injected superior retina. Overall, these data suggest that manipulation of the ER quality control and ER-associated degradation factors to promote mutant protein degradation could be beneficial for the treatment of adRP caused by mutant rhodopsin.
  •  
6.
  • Ahlqvist, Emma, et al. (författare)
  • High-resolution mapping of a complex disease, a model for rheumatoid arthritis, using heterogeneous stock mice
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 20:15, s. 3031-3041
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the genetic basis of complex diseases like rheumatoid arthritis will require knowledge of the corresponding diseases in experimental animals to enable translational functional studies. Mapping of quantitative trait loci in mouse models of arthritis, such as collagen-induced arthritis (CIA), using F-2 crosses has been successful, but can resolve loci only to large chromosomal regions. Using an inbred-outbred cross design, we identified and fine-mapped CIA loci on a genome-wide scale. Heterogeneous stock mice were first intercrossed with an inbred strain, B10.Q, to introduce an arthritis permitting MHCII haplotype. Homozygous H2(q) mice were then selected to set up an F-3 generation with fixed major histocompatibility complex that was used for arthritis experiments. We identified 26 loci, 18 of which are novel, controlling arthritis traits such as incidence of disease, severity and time of onset and fine-mapped a number of previously mapped loci.
  •  
7.
  • Ahn, Jiyoung, et al. (författare)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • Ingår i: Human molecular genetics. - 1460-2083. ; 18:19, s. 3749-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
8.
  • Ahola-Erkkilä, Sofia, et al. (författare)
  • Ketogenic diet slows down mitochondrial myopathy progression in mice
  • 2010
  • Ingår i: ; 19:10, s. 1974-1984
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction is a major cause of neurodegenerative and neuromuscular diseases of adult age and of multisystem disorders of childhood. However, no effective treatment exists for these progressive disorders. Cell culture studies suggested that ketogenic diet (KD), with low glucose and high fat content, could select against cells or mitochondria with mutant mitochondrial DNA (mtDNA), but proper patient trials are still lacking. We studied here the transgenic Deletor mouse, a disease model for progressive late-onset mitochondrial myopathy, accumulating mtDNA deletions during aging and manifesting subtle progressive respiratory chain (RC) deficiency. We found that these mice have widespread lipidomic and metabolite changes, including abnormal plasma phospholipid and free amino acid levels and ketone body production. We treated these mice with pre-symptomatic long-term and post-symptomatic shorter term KD. The effects of the diet for disease progression were followed by morphological, metabolomic and lipidomic tools. We show here that the diet decreased the amount of cytochrome c oxidase negative muscle fibers, a key feature in mitochondrial RC deficiencies, and prevented completely the formation of the mitochondrial ultrastructural abnormalities in the muscle. Furthermore, most of the metabolic and lipidomic changes were cured by the diet to wild-type levels. The diet did not, however, significantly affect the mtDNA quality or quantity, but rather induced mitochondrial biogenesis and restored liver lipid levels. Our results show that mitochondrial myopathy induces widespread metabolic changes, and that KD can slow down progression of the disease in mice. These results suggest that KD may be useful for mitochondrial late-onset myopathies.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (285)
Typ av innehåll
refereegranskat (283)
övrigt vetenskapligt (2)
Författare/redaktör
Easton, DF (22)
Haiman, CA (21)
Lindblom, A (18)
Southey, MC (18)
Chanock, SJ (17)
Giles, GG (17)
visa fler...
Hopper, JL (17)
Chang-Claude, J (17)
Henderson, BE (17)
Hall, P (16)
Couch, FJ (16)
Le Marchand, L (16)
Chenevix-Trench, G (16)
Benitez, J. (15)
Garcia-Closas, M (15)
Czene, K (14)
Dunning, AM (14)
Andrulis, IL (14)
Nevanlinna, H (13)
Wiklund, F (13)
Margolin, S (13)
Fasching, PA (13)
Cox, A (13)
Bojesen, SE (13)
Dennis, J (12)
Andersen, Peter M. (12)
Peterlongo, P (12)
Hofman, Albert (12)
Uitterlinden, Andre ... (12)
Hamann, U (12)
Beckmann, MW (12)
Radice, P (12)
Devilee, P (12)
Pharoah, PDP (12)
Riboli, E. (11)
Brenner, H (11)
Chanock, Stephen J (11)
Nordestgaard, BG (11)
Albanes, D (11)
Muir, K (11)
Berndt, SI (11)
Orr, N (11)
Peto, J (11)
Burwinkel, B (11)
Olson, JE (11)
Severi, G (11)
Lubinski, J (11)
Milne, RL (11)
Johansson, Åsa (11)
Diver, W. Ryan (11)
visa färre...
Lärosäte
Karolinska Institutet (137)
Uppsala universitet (75)
Umeå universitet (51)
Göteborgs universitet (33)
Lunds universitet (24)
Linköpings universitet (14)
visa fler...
Stockholms universitet (10)
Ersta Sköndal Bräcke högskola (6)
Örebro universitet (4)
Jönköping University (2)
Högskolan i Skövde (2)
Linnéuniversitetet (2)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
Gymnastik- och idrottshögskolan (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (285)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (116)
Naturvetenskap (30)
Samhällsvetenskap (1)

År

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy