SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2199 ;lar1:(kth)"

Sökning: L773:1460 2199 > Kungliga Tekniska Högskolan

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvidsson, Caroline, et al. (författare)
  • Conversational production and comprehension: fMRI-evidence reminiscent of but deviant from the classical Broca–Wernicke model
  • 2024
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 34:3
  • Tidskriftsartikel (refereegranskat)abstract
    • A key question in research on the neurobiology of language is to which extent the language production and comprehension systems share neural infrastructure, but this question has not been addressed in the context of conversation. We utilized a public fMRI dataset where 24 participants engaged in unscripted conversations with a confederate outside the scanner, via an audio-video link. We provide evidence indicating that the two systems share neural infrastructure in the left-lateralized perisylvian language network, but diverge regarding the level of activation in regions within the network. Activity in the left inferior frontal gyrus was stronger in production compared to comprehension, while comprehension showed stronger recruitment of the left anterior middle temporal gyrus and superior temporal sulcus, compared to production. Although our results are reminiscent of the classical Broca–Wernicke model, the anterior (rather than posterior) temporal activation is a notable difference from that model. This is one of the findings that may be a consequence of the conversational setting, another being that conversational production activated what we interpret as higher-level socio-pragmatic processes. In conclusion, we present evidence for partial overlap and functional asymmetry of the neural infrastructure of production and comprehension, in the above-mentioned frontal vs temporal regions during conversation.
  •  
2.
  • Denker, M, et al. (författare)
  • The local field potential reflects surplus spike synchrony
  • 2011
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 21:12, s. 2681-2695
  • Tidskriftsartikel (refereegranskat)abstract
    •  While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes. This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations but contribute only a fraction of their spikes to temporally precise spike configurations. This finding provides direct evidence for the hypothesized relation that precise spike synchrony constitutes a major temporally and spatially organized component of the LFP.
  •  
3.
  • Ferri, Stefania, et al. (författare)
  • Stereoscopically Observing Manipulative Actions
  • 2016
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199.
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to investigate the contribution of stereopsis to the processing of observed manipulative actions. To this end, we first combined the factors “stimulus type” (action, static control, and dynamic control), “stereopsis” (present, absent) and “viewpoint” (frontal, lateral) into a single design. Four sites in premotor, retro-insular (2) and parietal cortex operated specifically when actions were viewed stereoscopically and frontally. A second experiment clarified that the stereo-action-specific regions were driven by actions moving out of the frontoparallel plane, an effect amplified by frontal viewing in premotor cortex. Analysis of single voxels and their discriminatory power showed that the representation of action in the stereo-action-specific areas was more accurate when stereopsis was active. Further analyses showed that the 4 stereo-action-specific sites form a closed network converging onto the premotor node, which connects to parietal and occipitotemporal regions outside the network. Several of the specific sites are known to process vestibular signals, suggesting that the network combines observed actions in peripersonal space with gravitational signals. These findings have wider implications for the function of premotor cortex and the role of stereopsis in human behavior.
  •  
4.
  • Hagen, Espen, et al. (författare)
  • Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks
  • 2016
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 26:12, s. 4461-4496
  • Tidskriftsartikel (refereegranskat)abstract
    • With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a similar to 1 mm(2) patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail.
  •  
5.
  • Keimpema, Erik, et al. (författare)
  • GABAergic Terminals Are a Source of Galanin to Modulate Cholinergic Neuron Development in the Neonatal Forebrain
  • 2014
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 24:12, s. 3277-3288
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution and (patho-) physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with.-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.
  •  
6.
  • Rinne, Nea, et al. (författare)
  • Developmental dyslexia susceptibility genes DNAAF4, DCDC2, and NRSN1 are associated with brain function in fluently reading adolescents and young adults
  • 2024
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 34:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Reading skills and developmental dyslexia, characterized by difficulties in developing reading skills, have been associated with brain anomalies within the language network. Genetic factors contribute to developmental dyslexia risk, but the mechanisms by which these genes influence reading skills remain unclear. In this preregistered study (https://osf.io/7sehx), we explored if developmental dyslexia susceptibility genes DNAAF4, DCDC2, NRSN1, and KIAA0319 are associated with brain function in fluently reading adolescents and young adults. Functional MRI and task performance data were collected during tasks involving written and spoken sentence processing, and DNA sequence variants of developmental dyslexia susceptibility genes previously associated with brain structure anomalies were genotyped. The results revealed that variation in DNAAF4, DCDC2, and NRSN1 is associated with brain activity in key language regions: the left inferior frontal gyrus, middle temporal gyrus, and intraparietal sulcus. Furthermore, NRSN1 was associated with task performance, but KIAA0319 did not yield any significant associations. Our findings suggest that individuals with a genetic predisposition to developmental dyslexia may partly employ compensatory neural and behavioral mechanisms to maintain typical task performance. Our study highlights the relevance of these developmental dyslexia susceptibility genes in language-related brain function, even in individuals without developmental dyslexia, providing valuable insights into the genetic factors influencing language processing.
  •  
7.
  • Schnepel, Philipp, et al. (författare)
  • Physiology and impact of horizontal connections in rat neocortex
  • 2014
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199.
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortical information processing at the cellular level has predominantly been studied in local networks, which are dominated by strong vertical connectivity between layers. However, recent studies suggest that the bulk of axons targeting pyramidal neurons most likely originate from outside this local range, emphasizing the importance of horizontal connections. We mapped a subset of these connections to L5B pyramidal neurons in rat somatosensory cortex with photostimulation, identifying intact projections up to a lateral distance of 2 mm. Our estimates of the spatial distribution of cells presynaptic to L5B pyramids support the idea that the majority is located outside the local volume. The synaptic physiology of horizontal connections does not differ markedly from that of local connections, whereas the layer and cell-type-dependent pattern of innervation does. Apart from L2/3, L6A provides a strong source of horizontal connections. Implementing our data into a spiking neuronal network model shows that more horizontal connections promote robust asynchronous ongoing activity states and reduce noise correlations in stimulus-induced activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy