SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2199 ;lar1:(umu)"

Sökning: L773:1460 2199 > Umeå universitet

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergström, Fredrik, 1983-, et al. (författare)
  • Neural evidence for non-conscious working memory
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 28:9, s. 3217-3228
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have found that non-consciously perceived information can be retained for several seconds, a feat that has been attributed to non-conscious working memory processes. However, these studies have mainly relied on subjective measures of visual experience, and the neural processes responsible for non-conscious short-term retention remains unclear. Here we used continuous flash suppression to render stimuli non-conscious in a delayed match-to-sample task together with fMRI to investigate the neural correlates of non-conscious short-term (5-15 s) retention. The participants' behavioral performance was at chance level when they reported no visual experience of the sample stimulus. Critically, multivariate pattern analyses of BOLD signal during the delay phase could classify presence versus absence of sample stimuli based on signal patterns in frontal cortex, and its spatial position based on signal patterns in occipital cortex. In addition, univariate analyses revealed increased BOLD signal change in prefrontal regions during memory recognition. Thus, our findings demonstrate short-term maintenance of information presented non-consciously, defined by chance performance behaviorally. This non-consciously retained information seems to rely on persistent neural activity in frontal and occipital cortex, and may engage further cognitive control processes during memory recognition.
  •  
2.
  • de Boer, Lieke, et al. (författare)
  • Corticostriatal White Matter Integrity and Dopamine D1 Receptor Availability Predict Age Differences in Prefrontal Value Signaling during Reward Learning
  • 2020
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 30:10, s. 5270-5280
  • Tidskriftsartikel (refereegranskat)abstract
    • Probabilistic reward learning reflects the ability to adapt choices based on probabilistic feedback. The dopaminergically innervated corticostriatal circuit in the brain plays an important role in supporting successful probabilistic reward learning. Several components of the corticostriatal circuit deteriorate with age, as it does probabilistic reward learning. We showed previously that D1 receptor availability in NAcc predicts the strength of anticipatory value signaling in vmPFC, a neural correlate of probabilistic learning that is attenuated in older participants and predicts probabilistic reward learning performance. We investigated how white matter integrity in the pathway between nucleus accumbens (NAcc) and ventromedial prefrontal cortex (vmPFC) relates to the strength of anticipatory value signaling in vmPFC in younger and older participants. We found that in a sample of 22 old and 23 young participants, fractional anisotropy in the pathway between NAcc and vmPFC predicted the strength of value signaling in vmPFC independently from D1 receptor availability in NAcc. These findings provide tentative evidence that integrity in the dopaminergic and white matter pathways of corticostriatal circuitry supports the expression of value signaling in vmPFC which supports reward learning, however, the limited sample size calls for independent replication. These and future findings could add to the improved understanding of how corticostriatal integrity contributes to reward learning ability.
  •  
3.
  • Dunås, Tora, et al. (författare)
  • Multimodal Image Analysis of Apparent Brain Age Identifies Physical Fitness as Predictor of Brain Maintenance
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:7, s. 3393-3407
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintaining a youthful brain structure and function throughout life may be the single most important determinant ofsuccessful cognitive aging. In this study, we addressed heterogeneity in brain aging by making image-based brain agepredictions and relating the brain age prediction gap (BAPG) to cognitive change in aging. Structural, functional, anddiffusion MRI scans from 351 participants were used to train and evaluate 5 single-modal and 4 multimodal predictionmodels, based on 7 regression methods. The models were compared on mean absolute error and whether they were relatedto physical fitness and cognitive ability, measured both currently and longitudinally, as well as study attrition and years ofeducation. Multimodal prediction models performed at a similar level as single-modal models, and the choice of regressionmethod did not significantly affect the results. Correlation with the BAPG was found for current physical fitness, currentcognitive ability, and study attrition. Correlations were also found for retrospective physical fitness, measured 10 years priorto imaging, and slope for cognitive ability during a period of 15 years. The results suggest that maintaining a high physicalfitness throughout life contributes to brain maintenance and preserved cognitive ability.
  •  
4.
  • Eriksson, Johan, et al. (författare)
  • Similar frontal and distinct posterior cortical regions mediate visual and auditory perceptual awareness
  • 2007
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 17:4, s. 760-765
  • Tidskriftsartikel (refereegranskat)abstract
    • Activity in ventral visual cortex is a consistent neural correlate of visual consciousness. However, activity in this area seems insufficient to produce awareness without additional involvement of frontoparietal regions. To test the generality of the frontoparietal response, neural correlates of auditory awareness were investigated in a paradigm that previously has revealed frontoparietal activity during conscious visual perception. A within-experiment comparison showed that frontal regions were related to both visual and auditory awareness, whereas parietal activity was correlated with visual awareness and superior temporal activity with auditory awareness. These results indicate that frontal regions interact with specific posterior regions to produce awareness in different sensory modalities.
  •  
5.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
6.
  • Garzón, Benjamín, et al. (författare)
  • Investigating associations of delay discounting with brain structure, working memory, and episodic memory
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199.
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Delay discounting (DD), the preference for smaller and sooner rewards over larger and later ones, is an important behavioural phenomenon for daily functioning of increasing interest within psychopathology. The neurobiological mechanisms behind DD are not well understood and the literature on structural correlates of DD shows inconsistencies.Methods: Here we leveraged a large openly available dataset (n = 1196) to investigate associations with memory performance and gray and white matter correlates of DD using linked independent component analysis.Results: Greater DD was related to smaller anterior temporal gray matter volume. Associations of DD with total cortical volume, subcortical volumes, markers of white matter microscopic organization, working memory, and episodic memory scores were not significant after controlling for education and income.Conclusion: Effects of size comparable to the one we identified would be unlikely to be replicated with sample sizes common in many previous studies in this domain, which may explain the incongruities in the literature. The paucity and small size of the effects detected in our data underscore the importance of using large samples together with methods that accommodate their statistical structure and appropriate control for confounders, as well as the need to devise paradigms with improved task parameter reliability in studies relating brain structure and cognitive abilities with DD.
  •  
7.
  • Guitart-Masip, Marc, et al. (författare)
  • BOLD Variability is Related to Dopaminergic Neurotransmission and Cognitive Aging
  • 2016
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 26:5, s. 2074-2083
  • Tidskriftsartikel (refereegranskat)abstract
    • Dopamine (DA) losses are associated with various aging-related cognitive deficits. Typically, higher moment-to-moment brain signal variability in large-scale patterns of voxels in neocortical regions is linked to better cognitive performance and younger adult age, yet the physiological mechanisms regulating brain signal variability are unknown. We explored the relationship among adult age, DA availability, and blood oxygen level-dependent (BOLD) signal variability, while younger and older participants performed a spatial working memory (SWM) task. We quantified striatal and extrastriatal DA D1 receptor density with [C-11]SCH23390 and positron emission tomography in all participants. We found that BOLD variability in a neocortical region was negatively related to age and positively related to SWM performance. In contrast, BOLD variability in subcortical regions and bilateral hippocampus was positively related to age and slower responses, and negatively related to D1 density in caudate and dorsolateral prefrontal cortex. Furthermore, BOLD variability in neocortical regions was positively associated with task-related disengagement of the default-mode network, a network whose activation needs to be suppressed for efficient SWM processing. Our results show that age-related DA losses contribute to changes in brain signal variability in subcortical regions and suggest a potential mechanism, by which neocortical BOLD variability supports cognitive performance.
  •  
8.
  • Habib, Reza, et al. (författare)
  • Neural Correlates of Availability and Accessibility in Memory
  • 2008
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 8:7, s. 1720-1726
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Failure to remember can be due to not having information available in memory or to an inability to access information that is available. We used functional magnetic resonance imaging to examine brain responses during encoding and successive cued recall and associative recognition tests of paired associates. Items were classified into 3 categories based on performance on the 2 retrieval tests: 1) successfully remembered (both recalled and recognized), 2) inaccessible (not recalled but later recognized), and 3) forgotten (neither recalled nor recognized). During cued recall, availability in memory was signaled in a network of regions including bilateral medial temporal lobe, left middle temporal cortex, and the parietal cortex. Memory access resulted in heightened activity in these regions as well as in left inferior frontal cortex. Encoding-related activity in hippocampus and inferior temporal cortex predicted subsequent availability and left inferior frontal activity predicted subsequent access. These results suggest that failure to access information that is available in memory may reflect weaker memory representations.
  •  
9.
  • Hedden, Trey, et al. (författare)
  • Multiple Brain Markers are Linked to Age-Related Variation in Cognition
  • 2016
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 26:4, s. 1388-1400
  • Tidskriftsartikel (refereegranskat)abstract
    • Age-related alterations in brain structure and function have been challenging to link to cognition due to potential overlapping influences of multiple neurobiological cascades. We examined multiple brain markers associated with age-related variation in cognition. Clinically normal older humans aged 65-90 from the Harvard Aging Brain Study (N = 186) were characterized on a priori magnetic resonance imaging markers of gray matter thickness and volume, white matter hyperintensities, fractional anisotropy (FA), resting-state functional connectivity, positron emission tomography markers of glucose metabolism and amyloid burden, and cognitive factors of processing speed, executive function, and episodic memory. Partial correlation and mediation analyses estimated age-related variance in cognition shared with individual brain markers and unique to each marker. The largest relationships linked FA and striatum volume to processing speed and executive function, and hippocampal volume to episodic memory. Of the age-related variance in cognition, 70-80% was accounted for by combining all brain markers (but only ∼20% of total variance). Age had significant indirect effects on cognition via brain markers, with significant markers varying across cognitive domains. These results suggest that most age-related variation in cognition is shared among multiple brain markers, but potential specificity between some brain markers and cognitive domains motivates additional study of age-related markers of neural health.
  •  
10.
  • Iurilli, Giuliano, et al. (författare)
  • Loss of Visually Driven Synaptic Responses in Layer 4 Regular-Spiking Neurons of Rat Visual Cortex in Absence of Competing Inputs
  • 2012
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 22:9, s. 2171-2181
  • Tidskriftsartikel (refereegranskat)abstract
    • Monocular deprivation (MD) during development shifts the ocular preference of primary visual cortex (V1) neurons by depressing closed-eye responses and potentiating open-eye responses. As these 2 processes are temporally and mechanistically distinct, we tested whether loss of responsiveness occurs also in absence of competing inputs. We thus compared the effects of long-term MD in layer 4 regular-spiking pyramidal neurons (L4Ns) of binocular and monocular V1 (bV1 and mV1) with whole-cell recordings. In bV1, input depression was larger than potentiation, and the ocular dominance shift was larger for spike outputs. MD-but not retinal inactivation with tetrodotoxin-caused a comparable loss of synaptic and spike responsiveness in mV1, which is innervated only by the deprived eye. Conversely, brief MD depressed synaptic responses only in bV1. MD-driven depression in mV1 was accompanied by a proportional reduction of visual thalamic inputs, as assessed upon pharmacological silencing of intracortical transmission. Finally, sub- and suprathreshold responsiveness was similarly degraded in L4Ns of bV1 upon complete deprivation of patterned vision through a binocular deprivation period of comparable length. Thus, loss of synaptic inputs from the deprived eye occurs also in absence of competition in the main thalamorecipient lamina, albeit at a slower pace.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (30)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nyberg, Lars, 1966- (14)
Bäckman, Lars (9)
Nyberg, Lars (7)
Rieckmann, Anna (7)
Salami, Alireza (7)
Lindenberger, Ulman (7)
visa fler...
Andersson, Micael (5)
Guitart-Masip, Marc (4)
Karalija, Nina, 1984 ... (4)
Wåhlin, Anders (4)
Axelsson, Jan, 1966- (3)
Riklund, Katrine, MD ... (3)
Zsoldos, Eniko (3)
Persson, Jonas, 1971 ... (3)
Pudas, Sara, Docent, ... (3)
Lövdén, Martin (3)
Riklund, Katrine (2)
Larsson, Anne (2)
Eriksson, Johan (2)
Nilsson, Lars-Göran (2)
Boraxbekk, Carl-Joha ... (2)
Kormi-Nouri, Reza, 1 ... (1)
Ingvar, Martin (1)
Vainonen, Julia P (1)
Pudas, Sara (1)
de Boer, Lieke (1)
Johnson, Keith A. (1)
Sperling, Reisa A. (1)
Persson, Jonas (1)
Idland, Ane-Victoria (1)
Watne, Leiv Otto (1)
Karlsson, Per (1)
Bergström, Fredrik, ... (1)
Farde, Lars (1)
Willems, Patrick (1)
Lyngstad, Torkild Ho ... (1)
Andersson, Michael (1)
Riklund-Åhlström, Ka ... (1)
Bergström, Fredrik (1)
Schultz, Aaron P (1)
Kauppi, Karolina (1)
Avelar-Pereira, Bárb ... (1)
Grill, Filip (1)
Lindgren, Lenita (1)
Lundquist, Anders, 1 ... (1)
Medini, Paolo (1)
Kalpouzos, Grégoria (1)
Brehmer, Yvonne (1)
Gevaert, Kris (1)
Bertram, Lars (1)
visa färre...
Lärosäte
Stockholms universitet (13)
Karolinska Institutet (12)
Örebro universitet (2)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (27)
Samhällsvetenskap (9)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy