SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1460 2199 ;lar1:(uu)"

Sökning: L773:1460 2199 > Uppsala universitet

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bazov, Igor, 1973-, et al. (författare)
  • Neuronal Expression of Opioid Gene is Controlled by Dual Epigenetic and Transcriptional Mechanism in Human Brain
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:9, s. 3129-3142
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.
  •  
2.
  • Boyle, Julie A., et al. (författare)
  • The Human Brain Distinguishes between Single Odorants and Binary Mixtures
  • 2009
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 19:1, s. 66-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Single odors are processed differently from odor mixtures in the cortex of rodents. We investigated whether single and binary odor mixtures activate different regions also in the human brain. We analyzed data from positron emission tomography scans using pyridine, citral, and 5 mixtures of pyridine and citral in proportions varying from 10/90 to 90/10, with 50/50 being the most impure. Comparing mixtures with single odorants gave activation in the left cingulate and right parietal and superior frontal cortices and bilateral activation in the anterior and lateral orbitofrontal cortices. We also found that brain activity in the lateral orbitofrontal cortex (OFC) increased with odorant impurity, whereas the anterior OFC was activated for binary odor mixtures and deactivated for single components. We conclude that binary odor mixtures and their individual components are processed differently by the human brain. The lateral portion of the OFC responds to mixture impurity in a graded fashion, whereas the anterior portion acts like an on-off detector of odor mixtures.
  •  
3.
  • Darki, Fahimeh, et al. (författare)
  • T1-Weighted/T2-Weighted Ratio Mapping at 5 Months Captures Individual Differences in Behavioral Development and Differentiates Infants at Familial Risk for Autism from Controls
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:9, s. 4068-4077
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying structural measures that capture early brain development and are sensitive to individual differences in behavior is a priority in developmental neuroscience, with potential implications for our understanding of both typical and atypical populations. T1-weighted/T2-weighted (T1w/T2w) ratio mapping, which previously has been linked to myelination, represents an interesting candidate measure in this respect, as an accessible measure from standard magnetic resonance imaging (MRI) sequences. Yet, its value as an early infancy measure remains largely unexplored. Here, we compared T1w/T2w ratio in 5-month-old infants at familial risk (n = 27) for autism spectrum disorder (ASD) to those without elevated autism risk (n =16). We found lower T1w/T2w ratio in infants at high risk for ASD within widely distributed regions, spanning both white and gray matter. In regions differing between groups, higher T1w/T2w ratio was robustly associated with higher age at scan (range: similar to 4-6.5 months), implying sensitivity to maturation at short developmental timescales. Further, higher T1w/T2w ratio within these regions was associated with higher scores on measures of concurrent developmental level. These findings suggest that T1w/T2w ratio is a developmentally sensitive measure that should be explored further in future studies of both typical and atypical infant populations.
  •  
4.
  • Gezelius, Henrik, 1977-, et al. (författare)
  • Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes.
  • 2017
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 27:11, s. 5054-5069
  • Tidskriftsartikel (refereegranskat)abstract
    • The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.
  •  
5.
  • Herz, Noa, et al. (författare)
  • Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 32:2, s. 408-417
  • Tidskriftsartikel (refereegranskat)abstract
    • Aversive events can be reexperienced as involuntary and spontaneous mental images of the event. Given that the vividness of retrieved mental images is coupled with elevated visual activation, we tested whether neuromodulation of the visual cortex would reduce the frequency and negative emotional intensity of intrusive memories. Intrusive memories of a viewed trauma film and their accompanied emotional intensity were recorded throughout 5 days. Functional connectivity, measured with resting-state functional magnetic resonance imaging prior to film viewing, was used as predictive marker for intrusions-related negative emotional intensity. Results indicated that an interaction between the visual network and emotion processing areas predicted intrusions' emotional intensity. To test the causal influence of early visual cortex activity on intrusions' emotional intensity, participants' memory of the film was reactivated by brief reminders 1 day following film viewing, followed by inhibitory 1 Hz repetitive transcranial magnetic stimulation (rTMS) over early visual cortex. Results showed that visual cortex inhibitory stimulation reduced the emotional intensity of later intrusions, while leaving intrusion frequency and explicit visual memory intact. Current findings suggest that early visual areas constitute a central node influencing the emotional intensity of intrusive memories for negative events. Potential neuroscience-driven intervention targets designed to downregulate the emotional intensity of intrusive memories are discussed.
  •  
6.
  • Hofgaard Joensen, Bárður, et al. (författare)
  • Hippocampal theta activity during encoding promotes subsequent associative memory in humans
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:13, s. 8792-8802
  • Tidskriftsartikel (refereegranskat)abstract
    • Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.
  •  
7.
  • Kimmig, Ann-Christin Sophie, et al. (författare)
  • Lower affective empathy in oral contraceptive users : a cross-sectional fMRI study
  • 2023
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 33:8, s. 4319-4333
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence accumulates that oral contraceptive (OC) use modulates various socio-affective behaviors, including empathic abilities. Endogenous and synthetic sex hormones, such as estrogens and progestogens, bind to receptor sites in brain regions (i.e. frontal, limbic, and cerebellar) involved in socio-affective processing. Therefore, the aim of this study was to investigate the role of OC use in empathy. In a cross-sectional functional magnetic resonance imaging study, women in different hormonal states, including OC use (n = 46) or being naturally cycling in the early follicular (fNC: n = 37) or peri-ovulatory phase (oNC: n = 28), performed a visual, sentence-based empathy task. Behaviorally, OC users had lower empathy ratings than oNC women. Congruently, whole-brain analysis revealed significantly larger task-related activation of several brain regions, including the left dorsomedial prefrontal gyrus (dmPFG), left precentral gyrus, and left temporoparietal junction in oNC compared to OC women. In OC users, the activity of the left dmPFG and precentral gyrus was negatively associated with behavioral and self-reported affective empathy. Furthermore, empathy-related region-of-interest analysis indicated negative associations of brain activation with synthetic hormone levels in OC women. Overall, this multimodal, cross-sectional investigation of empathy suggests a role of OC intake in especially affective empathy and highlights the importance of including synthetic hormone levels in OC-related analyses.
  •  
8.
  • Mueller, Christian P., et al. (författare)
  • The Cortical Neuroimmune Regulator TANK Affects Emotional Processing and Enhances Alcohol Drinking : A Translational Study
  • 2019
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 29:4, s. 1736-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol abuse is a major public health problem worldwide. Understanding the molecular mechanisms that control regular drinking may help to reduce hazards of alcohol consumption. While immunological mechanisms have been related to alcohol drinking, most studies reported changes in immune function that are secondary to alcohol use. In this report, we analyse how the gene "TRAF family member-associated NF-kappa B activator" (TANK) affects alcohol drinking behavior. Based on our recent discovery in a large GWAS dataset that suggested an association of TANK, SNP rs197273, with alcohol drinking, we report that SNP rs197273 in TANK is associated both with gene expression (P = 1.16 x 10(-19)) and regional methylation (P = 5.90 x 10(-25)). A tank knock out mouse model suggests a role of TANK in alcohol drinking, anxiety-related behavior, as well as alcohol exposure induced activation of insular cortex NF-kappa B. Functional and structural neuroimaging studies among up to 1896 adolescents reveal that TANK is involved in the control of brain activity in areas of aversive interoceptive processing, including the insular cortex, but not in areas related to reinforcement, reward processing or impulsiveness. Our findings suggest that the cortical neuroimmune regulator TANK is associated with enhanced aversive emotional processing that better protects from the establishment of alcohol drinking behavior.
  •  
9.
  • Månsson, Kristoffer N. T., et al. (författare)
  • Viewing Pictures Triggers Rapid Morphological Enlargement in the Human Visual Cortex
  • 2019
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 30:3, s. 851-857
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring brain morphology with non-invasive structural magnetic resonance imaging is common practice, and can be used to investigate neuroplasticity. Brain morphology changes have been reported over the course of weeks, days, and hours in both animals and humans. If such short-term changes occur even faster, rapid morphological changes while being scanned could have important implications. In a randomized within-subject study on 47 healthy individuals, two high-resolution T1-weighted anatomical images were acquired (á 263 s) per individual. The images were acquired during passive viewing of pictures or a fixation cross. Two common pipelines for analyzing brain images were used: voxel-based morphometry on gray matter (GM) volume and surface-based cortical thickness. We found that the measures of both GM volume and cortical thickness showed increases in the visual cortex while viewing pictures relative to a fixation cross. The increase was distributed across the two hemispheres and significant at a corrected level. Thus, brain morphology enlargements were detected in less than 263 s. Neuroplasticity is a far more dynamic process than previously shown, suggesting that individuals’ current mental state affects indices of brain morphology. This needs to be taken into account in future morphology studies and in everyday clinical practice.
  •  
10.
  • Watanabe, Hiroyuki, et al. (författare)
  • Asymmetry of the Endogenous Opioid System in the Human Anterior Cingulate : a Putative Molecular Basis for Lateralization of Emotions and Pain
  • 2015
  • Ingår i: Cerebral Cortex. - United kingdom : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 25:1, s. 97-108
  • Tidskriftsartikel (refereegranskat)abstract
    • Lateralization of processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria and pain, the m-, d- and k-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and five “classical” neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg and Met-enkephalin-Arg-Phe, preferential d-/m- and k-/m-opioid agonists demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B strongly correlated with Leu-enkephalin-Arg in the left but not right ACC suggesting different mechanisms of conversion of this k-opioid agonist to d-/m-opioid ligand in the two hemispheres; in the right ACC dynorphin B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlyes in part lateralization of higher functions including positive and negative emotions and pain in the human brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy