SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1464 7931 OR L773:1469 185X ;lar1:(gu)"

Sökning: L773:1464 7931 OR L773:1469 185X > Göteborgs universitet

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, M. S., et al. (författare)
  • Deciphering mollusc shell production: the roles of genetic mechanisms through to ecology, aquaculture and biomimetics
  • 2020
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 95:6, s. 1812-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO(3)crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO(3)precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (similar to 29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes forin situlocalization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that theLsdia1gene sets shell chirality inLymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.
  •  
2.
  • Hyndes, G. A., et al. (författare)
  • The role of inputs of marine wrack and carrion in sandy-beach ecosystems: a global review
  • 2022
  • Ingår i: Biological Reviews Cambridge Philosophical Society. - : Wiley. - 1464-7931 .- 1469-185X. ; 97:6, s. 2127-61
  • Forskningsöversikt (refereegranskat)abstract
    • Sandy beaches are iconic interfaces that functionally link the ocean with the land via the flow of organic matter from the sea. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed 'wrack', on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source ('carrion') for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy-beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examine the spatial scaling of the influence of these processes across the broader land- and seascape, and identify key gaps in our knowledge to guide future research directions and priorities. Large quantities of detrital kelp and seagrass can flow into sandy-beach ecosystems, where microbial decomposers and animals process it. The rates of wrack supply and its retention are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the macrophyte taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack breakdown, and these can return to coastal waters in surface flows (swash) and aquifers discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy-beach ecosystems underpin a range of ecosystem functions and services, they can be at variance with aesthetic perceptions resulting in widespread activities, such as 'beach cleaning and grooming'. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects for food webs and biodiversity. Similarly, future sea-level rise and increased storm frequency are likely to alter profoundly the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.
  •  
3.
  • Kissling, W. Daniel, et al. (författare)
  • Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale
  • 2018
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 93:1, s. 600-625
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Cambridge Philosophical Society. Much biodiversity data is collected worldwide, but it remains challenging to assemble the scattered knowledge for assessing biodiversity status and trends. The concept of Essential Biodiversity Variables (EBVs) was introduced to structure biodiversity monitoring globally, and to harmonize and standardize biodiversity data from disparate sources to capture a minimum set of critical variables required to study, report and manage biodiversity change. Here, we assess the challenges of a 'Big Data' approach to building global EBV data products across taxa and spatiotemporal scales, focusing on species distribution and abundance. The majority of currently available data on species distributions derives from incidentally reported observations or from surveys where presence-only or presence-absence data are sampled repeatedly with standardized protocols. Most abundance data come from opportunistic population counts or from population time series using standardized protocols (e.g. repeated surveys of the same population from single or multiple sites). Enormous complexity exists in integrating these heterogeneous, multi-source data sets across space, time, taxa and different sampling methods. Integration of such data into global EBV data products requires correcting biases introduced by imperfect detection and varying sampling effort, dealing with different spatial resolution and extents, harmonizing measurement units from different data sources or sampling methods, applying statistical tools and models for spatial inter- or extrapolation, and quantifying sources of uncertainty and errors in data and models. To support the development of EBVs by the Group on Earth Observations Biodiversity Observation Network (GEO BON), we identify 11 key workflow steps that will operationalize the process of building EBV data products within and across research infrastructures worldwide. These workflow steps take multiple sequential activities into account, including identification and aggregation of various raw data sources, data quality control, taxonomic name matching and statistical modelling of integrated data. We illustrate these steps with concrete examples from existing citizen science and professional monitoring projects, including eBird, the Tropical Ecology Assessment and Monitoring network, the Living Planet Index and the Baltic Sea zooplankton monitoring. The identified workflow steps are applicable to both terrestrial and aquatic systems and a broad range of spatial, temporal and taxonomic scales. They depend on clear, findable and accessible metadata, and we provide an overview of current data and metadata standards. Several challenges remain to be solved for building global EBV data products: (i) developing tools and models for combining heterogeneous, multi-source data sets and filling data gaps in geographic, temporal and taxonomic coverage, (ii) integrating emerging methods and technologies for data collection such as citizen science, sensor networks, DNA-based techniques and satellite remote sensing, (iii) solving major technical issues related to data product structure, data storage, execution of workflows and the production process/cycle as well as approaching technical interoperability among research infrastructures, (iv) allowing semantic interoperability by developing and adopting standards and tools for capturing consistent data and metadata, and (v) ensuring legal interoperability by endorsing open data or data that are free from restrictions on use, modification and sharing. Addressing these challenges is critical for biodiversity research and for assessing progress towards conservation policy targets and sustainable development goals.
  •  
4.
  • Kvarnemo, Charlotta, 1963 (författare)
  • Why do some animals mate with one partner rather than many? A review of causes and consequences of monogamy.
  • 2018
  • Ingår i: Biological Reviews of the Cambridge Philosophical Society. - : Wiley. - 1469-185X. ; 93, s. 1795-1812
  • Forskningsöversikt (refereegranskat)abstract
    • Why do some animals mate with one partner rather than many? Here, I investigate factors related to (i) spatial constraints (habitat limitation, mate availability), (ii) time constraints (breeding synchrony, length of breeding season), (iii) need for parental care, and (iv) genetic compatibility, to see what support can be found in different taxa regarding the importance of these factors in explaining the occurrence of monogamy, whether shown by one sex (monogyny or monandry) or by both sexes (mutual monogamy). Focusing on reproductive rather than social monogamy whenever possible, I review the empirical literature for birds, mammals and fishes, with occasional examples from other taxa. Each of these factors can explain mating patterns in some taxa, but not in all. In general, there is mixed support for how well the factors listed above predict monogamy. The factor that shows greatest support across taxa is habitat limitation. By contrast, while a need for parental care might explain monogamy in freshwater fishes and birds, there is clear evidence that this is not the case in marine fishes and mammals. Hence, reproductive monogamy does not appear to have a single overriding explanation, but is more taxon specific. Genetic compatibility is a promising avenue for future work likely to improve our understanding of monogamy and other mating patterns. I also discuss eight important consequences of reproductive monogamy: (i) parentage, (ii) parental care, (iii) eusociality and altruism, (iv) infanticide, (v) effective population size, (vi) mate choice before mating, (vii) sexual selection, and (viii) sexual conflict. Of these, eusociality and infanticide have been subject to debate, briefly summarised herein. A common expectation is that monogamy leads to little sexual conflict and no or little sexual selection. However, as reviewed here, sexual selection can be substantial under mutual monogamy, and both sexes can be subject to such selection. Under long-term mutual monogamy, mate quality is obviously more important than mate numbers, which in turn affects the need for pre-mating mate choice. Overall, I conclude that, despite much research on genetic mating patterns, reproductive monogamy is still surprisingly poorly understood and further experimental and comparative work is needed. This review identifies several areas in need of more data and also proposes new hypotheses to test.
  •  
5.
  • Ng, TPT, et al. (författare)
  • Snails and their trails: the multiple functions of trail following in gastropods
  • 2013
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931 .- 1469-185X. ; 88:3, s. 683-700
  • Tidskriftsartikel (refereegranskat)abstract
    • Snails are highly unusual among multicellular animals in that they move on a layer of costly mucus, leaving behind a trail that can be followed and utilized for various purposes by themselves or by other animals. Here we review more than 40 years of experimental and theoretical research to try to understand the ecological and evolutionary rationales for trail-following in gastropods. Data from over 30 genera are currently available, representing a broad taxonomic range living in both aquatic and terrestrial environments. The emerging picture is that the production of mucus trails, which initially was an adaptation to facilitate locomotion and/or habitat extension, has evolved to facilitate a multitude of additional functions. Trail-following supports homing behaviours, and provides simple mechanisms for self-organisation in groups of snails, promoting aggregation and thus relieving desiccation and predation pressures. In gastropods that copulate, trail-following is an important component in mate-searching, either as an alternative, or in addition to the release of water- or air-borne pheromones. In some species, this includes a capacity of males not only to identify trails of conspecifics but also to discriminate between trails laid by females and males. Notably, trail discrimination seems important as a pre-zygotic barrier to mating in some snail species. As production of a mucus trail is the most costly component of snail locomotion, it is also tempting to speculate that evolution has given rise to various ways to compensate for energy losses. Some snails, for example, increase energy intake by eating particles attached to the mucus of trails that they follow, whereas others save energy through reducing the production of their own mucus by moving over previously laid mucus trails. Trail-following to locate a prey item or a mate is also a way to save energy. While the rationale for trail-following in many cases appears clear, the basic mechanisms of trail discrimination, including the mechanisms by which many snails determine the polarity of the trail, are yet to be experimentally determined. Given the multiple functions of trail-following we propose that future studies should adopt an integrated approach, taking into account the possibility of the simultaneous occurrence of many selectively advantageous roles of trail-following behaviour in gastropods. We also believe that future opportunities to link phenotypic and genotypic traits will make possible a new generation of research projects in which gastropod trail-following, its multitude of functions and evolutionary trade-offs can be further elucidated.
  •  
6.
  • Redpath, Steve M., et al. (författare)
  • Don't forget to look down – collaborative approaches to predator conservation
  • 2017
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 92:4, s. 2157-2163
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding effective ways of conserving large carnivores is widely recognised as a priority in conservation. However, there is disagreement about the most effective way to do this, with some favouring top-down ‘command and control’ approaches and others favouring collaboration. Arguments for coercive top-down approaches have been presented elsewhere; here we present arguments for collaboration. In many parts of the developed world, flexibility of approach is built into the legislation, so that conservation objectives are balanced with other legitimate goals. In the developing world, limited resources, poverty and weak governance mean that collaborative approaches are likely to play a particularly important part in carnivore conservation. In general, coercive policies may lead to the deterioration of political legitimacy and potentially to non-compliance issues such as illegal killing, whereas collaborative approaches may lead to psychological ownership, enhanced trust, learning, and better social outcomes. Sustainable hunting/trapping plays a crucial part in the conservation and management of many large carnivores. There are many different models for how to conserve carnivores effectively across the world, research is now required to reduce uncertainty and examine the effectiveness of these approaches in different contexts.
  •  
7.
  • Zanne, Amy E, et al. (författare)
  • Fungal functional ecology: bringing a trait-based approach to plant-associated fungi.
  • 2020
  • Ingår i: Biological reviews of the Cambridge Philosophical Society. - : Wiley. - 1469-185X .- 1464-7931. ; 95:2, s. 409-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro-organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function. Trait-based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and -omics-based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun ). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait-based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.
  •  
8.
  • Andersson, Malte, 1941, et al. (författare)
  • Brood parasitism, relatedness and sociality: a kinship role in female reproductive tactics
  • 2019
  • Ingår i: Biological Reviews. - : Wiley. - 1464-7931. ; 94:1, s. 307-327
  • Tidskriftsartikel (refereegranskat)abstract
    • Conspecific brood parasitism (CBP) is a reproductive tactic in which parasitic females lay eggs in nests of other females of the same species that then raise the joint brood. Parasites benefit by increased reproduction, without costs of parental care for the parasitic eggs. CBP occurs in many egg-laying animals, among birds most often in species with large clutches and self-feeding young: two major factors facilitating successful parasitism. CBP is particularly common in waterfowl (Anatidae), a group with female-biased natal philopatry and locally related females. Theory suggests that relatedness between host and parasite can lead to inclusive fitness benefits for both, but if host costs are high, parasites should instead target unrelated females. Pairwise relatedness (r) in host-parasite (h-p) pairs of females has been estimated using molecular genetic methods in seven waterfowl (10 studies). In many h-p pairs, the two females were unrelated (with low r, near the local population mean). However, close relatives (r = 0.5) were over-represented in h-p pairs, which in all 10 studies had higher mean relatedness than other females. In one species where this was studied, h-p relatedness was higher than between nesting close neighbours, and hosts parasitized by non-relatives aggressively rejected other females. In another species, birth nest-mates (mother-daughters, sisters) associated in the breeding area as adults, and became h-p pairs more often than expected by chance. These and other results point to recognition of birth nest-mates and perhaps other close relatives. For small to medium host clutch sizes, addition of a few parasitic eggs need not reduce host offspring success. Estimates in two species suggest that hosts can then gain inclusive fitness if parasitized by relatives. Other evidence of female cooperation is incubation by old eider Somateria mollissima females of clutches laid by their relatives, and merging and joint care of broods of young. Merging females tended to be more closely related. Eiders associate with kin in many situations, and in some geese and swans, related females may associate over many years. Recent genetic evidence shows that also New World quails (Odontophoridae) have female-biased natal philopatry, CBP and brood merging, inviting further study and comparison with waterfowl. Kin-related parasitism also occurs in some insects, with revealing parallels and differences compared to birds. In hemipteran bugs, receiving extra eggs is beneficial for hosts by diluting offspring predation. In eggplant lace bugs Gargaphia solani, host and parasite are closely related, and kin selection favours egg donation to related females. Further studies of kinship in CBP, brood merging and other contexts can test if some of these species are socially more advanced than presently known.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (6)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Abarenkov, Kessy (1)
Nilsson, R. Henrik, ... (1)
Schigel, Dmitry (1)
Morris, J. (1)
Obst, Matthias, 1974 (1)
Power, D. M. (1)
visa fler...
Sundell, Kristina, 1 ... (1)
Kissling, W. Daniel (1)
Hambäck, Peter A. (1)
Kvarnemo, Charlotta, ... (1)
Duarte, C (1)
Powell, Jeff (1)
Johansson, Maria (1)
Johannesson, Kerstin ... (1)
Andersson, Malte, 19 ... (1)
Åhlund, Matti, 1953 (1)
Waldeck, Peter, 1963 (1)
Linnell, John D. C. (1)
Young, Juliette (1)
Dupont, Samuel, 1971 (1)
Sanders, T (1)
Segata, Nicola (1)
Melzner, F. (1)
Berdan, Emma L, 1983 (1)
Sandström, Camilla, ... (1)
Sjölander Lindqvist, ... (1)
Cornwell, William K. (1)
Floudas, Dimitrios (1)
Festa-Bianchet, Marc ... (1)
Bunnefeld, Nils (1)
Fernandez, Miguel (1)
Peck, L. S. (1)
Clark, M. S. (1)
Pereira, Henrique M. (1)
Trouwborst, Arie (1)
Pesole, Graziano (1)
Arivalagan, J. (1)
Backeljau, T. (1)
Berland, S. (1)
Cardoso, J. C. R. (1)
Caurcel, C. (1)
Chapelle, G. (1)
De Noia, M. (1)
Gharbi, K. (1)
Hoffman, J. I. (1)
Last, K. S. (1)
Marie, A. (1)
Michalek, K. (1)
Ramesh, K. (1)
Sillanpää, Kirsikka (1)
visa färre...
Lärosäte
Lunds universitet (2)
Umeå universitet (1)
Stockholms universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy