SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2148 OR L773:1471 2148 ;lar1:(kth)"

Sökning: L773:1471 2148 OR L773:1471 2148 > Kungliga Tekniska Högskolan

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aspeborg, Henrik, 1970-, et al. (författare)
  • Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)
  • 2012
  • Ingår i: BMC Evolutionary Biology. - : Springer Nature. - 1471-2148. ; 12:1, s. 186-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on beta-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. Results: About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Conclusion: Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html.
  •  
2.
  • Dwivedi, Bhakti, et al. (författare)
  • A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes
  • 2013
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 13:1, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundRibonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively.ResultsRNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host’s ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage.ConclusionsThis comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments.
  •  
3.
  • Guo, Songchang, et al. (författare)
  • Origin of mitochondrial DNA diversity of domestic yaks
  • 2006
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions. Results: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rate Conclusion: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau.
  •  
4.
  • Åkerborg, Örjan, et al. (författare)
  • Birth-death prior on phylogeny and speed dating
  • 2008
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 8:1, s. 77-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies. Results: We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on. Conclusion: Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models.
  •  
5.
  • Ali, Raja Hashim, 1985-, et al. (författare)
  • GenFamClust : an accurate, synteny-aware and reliable homology inference algorithm
  • 2016
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Homology inference is pivotal to evolutionary biology and is primarily based on significant sequence similarity, which, in general, is a good indicator of homology. Algorithms have also been designed to utilize conservation in gene order as an indication of homologous regions. We have developed GenFamClust, a method based on quantification of both gene order conservation and sequence similarity. Results: In this study, we validate GenFamClust by comparing it to well known homology inference algorithms on a synthetic dataset. We applied several popular clustering algorithms on homologs inferred by GenFamClust and other algorithms on a metazoan dataset and studied the outcomes. Accuracy, similarity, dependence, and other characteristics were investigated for gene families yielded by the clustering algorithms. GenFamClust was also applied to genes from a set of complete fungal genomes and gene families were inferred using clustering. The resulting gene families were compared with a manually curated gold standard of pillars from the Yeast Gene Order Browser. We found that the gene-order component of GenFamClust is simple, yet biologically realistic, and captures local synteny information for homologs. Conclusions: The study shows that GenFamClust is a more accurate, informed, and comprehensive pipeline to infer homologs and gene families than other commonly used homology and gene-family inference methods.
  •  
6.
  • Ning, Tiao, et al. (författare)
  • Local origin or external input : modern horse origin in East Asia
  • 2019
  • Ingår i: BMC Evolutionary Biology. - : BMC. - 1471-2148. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Despite decades of research, the horse domestication scenario in East Asia remains poorly understood. Results The study identified 16 haplogroups with fine-scale phylogenetic resolution using mitochondrial genomes of 317 horse samples. The time to the most recent common ancestor of the 16 haplogroups ranges from [0.8-3.1] thousand years ago (KYA) to [7.9-27.1] KYA. With combined analyses of the mitochondrial control region for 35 extant Przewalski's horses, 3544 modern and 203 ancient horses across the world, researchers provide evidence for that East Asian prevalent haplogroups Q and R were indigenously domesticated or they were involved in numerous distinct genetic components from wild horses in the southern part of East Asia. These events of haplotypes Q and R occurred during 4.7 to 16.3 KYA and 2.1 to 11.5 KYA, respectively. The diffusion of preponderant European haplogroups L from west to East Asia is consistent with the external gene input. Furthermore, genetic differences were detected between northern East Asia and southern East Asia cohorts by Principal Component Analysis, Analysis of Molecular Variance test, the chi(2) test and phylogeographic analyses. Conclusions All results suggest a complex picture of horse domestication, as well as geographic pattern in East Asia. Both local origin and external input occurred in East Asia horse populations. And besides, there are at least two different domestication or hybridization centers in East Asia.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy