SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2148 OR L773:1471 2148 ;pers:(Wahlberg Niklas)"

Sökning: L773:1471 2148 OR L773:1471 2148 > Wahlberg Niklas

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kodandaramaiah, Ullasa, et al. (författare)
  • Phylogenetics and biogeography of a spectacular Old World radiation of grass feeding butterflies: the subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrini)
  • 2010
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 10, s. 172-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group. Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis, while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.
  •  
2.
  • Wahlberg, Niklas, et al. (författare)
  • Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini)
  • 2009
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 92:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Major conflict between mitochondrial and nuclear genes in estimating species relationships is an increasingly common finding in animals. Usually this is attributed to incomplete lineage sorting, but recently the possibility has been raised that hybridization is important in generating such phylogenetic patterns. Just how widespread ancient and/or recent hybridization is in animals and how it affects estimates of species relationships is still not well-known. Results We investigate the species relationships and their evolutionary history over time in the genus Polygonia using DNA sequences from two mitochondrial gene regions (COI and ND1, total 1931 bp) and four nuclear gene regions (EF-1α, wingless, GAPDH and RpS5, total 2948 bp). We found clear, strongly supported conflict between mitochondrial and nuclear DNA sequences in estimating species relationships in the genus Polygonia. Nodes at which there was no conflict tended to have diverged at the same time when analyzed separately, while nodes at which conflict was present diverged at different times. We find that two species create most of the conflict, and attribute the conflict found in Polygonia satyrus to ancient hybridization and conflict found in Polygonia oreas to recent or ongoing hybridization. In both examples, the nuclear gene regions tended to give the phylogenetic relationships of the species supported by morphology and biology. Conclusion Studies inferring species-level relationships using molecular data should never be based on a single locus. Here we show that the phylogenetic hypothesis generated using mitochondrial DNA gives a very different interpretation of the evolutionary history of Polygonia species compared to that generated from nuclear DNA. We show that possible cases of hybridization in Polygonia are not limited to sister species, but may be inferred further back in time. Furthermore, we provide more evidence that Haldane's effect might not be as strong a process in preventing hybridization in butterflies as has been previously thought.
  •  
3.
  • Aduse-Poku, Kwaku, et al. (författare)
  • Systematics and historical biogeography of the Old World butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae)
  • 2015
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 15, s. 167-167
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Butterflies of the subtribe Mycalesina have radiated successfully in almost all habitat types in Africa, Madagascar, the Indian subcontinent, Indo-China and Australasia. Studies aimed at understanding the reasons behind the evolutionary success of this spectacular Old World butterfly radiation have been hampered by the lack of a stable phylogeny for the group. Here, we have reconstructed a robust phylogenetic framework for the subtribe using 10 genes from 195 exemplar taxa. RESULTS: We recovered seven well supported clades within the subtribe corresponding to the five traditional genera (Lohora, Heteropsis, Hallelesis, Bicyclus, Mycalesis), one as recently revised (Mydosama) and one newly revised genus (Culapa). The phylogenetic relationships of these mycalesine genera have been robustly established for the first time. Within the proposed phylogenetic framework, we estimated the crown age of the subtribe to be 40 Million years ago (Mya) and inferred its ultimate origin to be in Asia. Our results reveal both vicariance and dispersal as factors responsible for the current widespread distribution of the group in the Old World tropics. We inferred that the African continent has been colonized at least twice by Asian mycalesines within the last 26 and 23 Mya. In one possible scenario, an Asian ancestor gave rise to Heteropsis on continental Africa, which later dispersed into Madagascar and most likely back colonised Asia. The second colonization of Africa by Asian ancestors resulted in Hallelesis and Bicyclus on continental Africa, the descendants of which did not colonise other regions but rather diversified only in continental Africa. The genera Lohora and Mydosama are derivatives of ancestors from continental Asia. CONCLUSION: Our proposed time-calibrated phylogeny now provides a solid framework within which we can implement mechanistic studies aimed at unravelling the ecological and evolutionary processes that culminated in the spectacular radiation of mycalesines in the Old World tropics.
  •  
4.
  • Heikkilä, Maria, et al. (författare)
  • Elusive ditrysian phylogeny: an account of combining systematized morphology with molecular data (Lepidoptera).
  • 2015
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ditrysia comprise close to 99 % of all butterflies and moths. The evolutionary relationships among the ditrysian superfamilies have received considerable attention in phylogenetic studies based on DNA and transcriptomic data, but the deepest divergences remain for large parts unresolved or contradictory. To obtain complementary insight into the evolutionary history of the clade, and to test previous hypotheses on the subdivision of Ditrysia based on morphology, we examine the morphology of larvae, pupae and adult males and females of 318 taxa representing nearly all ditrysian superfamilies and families. We present the most comprehensive morphological dataset on Ditrysia to date, consisting of over 500 morphological characters. The data are analyzed alone and combined with sequence data (one mitochondrial and seven nuclear protein-coding gene regions, sequenced from 422 taxa). The full dataset consists of 473 exemplar species. Analyses are performed using maximum likelihood methods, and parsimony methods for the morphological dataset. We explore whether combining morphological data and DNA-data can stabilize taxa that are unstable in phylogenetic studies based on genetic data only.
  •  
5.
  • Honkola, Terhi, et al. (författare)
  • Evolution within a language : Environmental differences contribute to divergence of dialect groups
  • 2018
  • Ingår i: BMC Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The processes leading to the diversity of over 7000 present-day languages have been the subject of scholarly interest for centuries. Several factors have been suggested to contribute to the spatial segregation of speaker populations and the subsequent linguistic divergence. However, their formal testing and the quantification of their relative roles is still missing. We focussed here on the early stages of the linguistic divergence process, that is, the divergence of dialects, with a special focus on the ecological settings of the speaker populations. We adopted conceptual and statistical approaches from biological microevolution and parallelled intra-lingual variation with genetic variation within a species. We modelled the roles of geographical distance, differences in environmental and cultural conditions and in administrative history on linguistic divergence at two different levels: between municipal dialects (cf. in biology, between individuals) and between dialect groups (cf. in biology, between populations). Results: We found that geographical distance and administrative history were important in separating municipal dialects. However, environmental and cultural differences contributed markedly to the divergence of dialect groups. In biology, increase in genetic differences between populations together with environmental differences may suggest genetic differentiation of populations through adaptation to the local environment. However, our interpretation of this result is not that language itself adapts to the environment. Instead, it is based on Homo sapiens being affected by its environment, and its capability to adapt culturally to various environmental conditions. The differences in cultural adaptations arising from environmental heterogeneity could have acted as nonphysical barriers and limited the contacts and communication between groups. As a result, linguistic differentiation may emerge over time in those speaker populations which are, at least partially, separated. Conclusions: Given that the dialects of isolated speaker populations may eventually evolve into different languages, our result suggests that cultural adaptation to local environment and the associated isolation of speaker populations have contributed to the emergence of the global patterns of linguistic diversity.
  •  
6.
  • Janz, Niklas, et al. (författare)
  • Diversity begets diversity : host expansions and the diversification of plant-feeding insects
  • 2006
  • Ingår i: BMC Evolutionary Biology. - 1471-2148. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity.Results: By applying a variant of independent contrast analysis, specially tailored for use on questions of species richness (MacroCAIC), we show that species richness is strongly correlated with diversity of host use in the butterfly family Nymphalidae. Furthermore, by comparing the results from reciprocal sister group selection, where sister groups were selected either on the basis of diversity of host use or species richness, we find that it is likely that diversity of host use is driving species richness, rather than vice versa.Conclusion: We conclude that resource diversity is correlated with species richness in the Nymphalidae and suggest a scenario based on recurring oscillations between host expansions – the incorporation of new plants into the repertoire – and specialization, as an important driving force behind the diversification of plant-feeding insects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy