SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2164 OR L773:1471 2164 ;pers:(Mijakovic Ivan 1975)"

Sökning: L773:1471 2164 OR L773:1471 2164 > Mijakovic Ivan 1975

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Motwalli, Olaa, et al. (författare)
  • In silico screening for candidate chassis strains of free fatty acid-producing cyanobacteria
  • 2017
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. Results: Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. Conclusion: To our knowledge FFASC is the first in silico method to screen cyanobacteria proteomes for their potential to produce and excrete FFA, as well as the first attempt to parameterize the criteria derived from genetic characteristics that are favorable/non-favorable for this purpose. Thus, FFASC helps focus experimental evaluation only on the most promising cyanobacteria.
  •  
2.
  • Othoum, Ghofran, et al. (författare)
  • In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters
  • 2018
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 19:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions. Results: We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial mat collected from Rabigh Harbor Lagoon in Saudi Arabia. Comparing the genomes of B. paralicheniformis Bac48 and B. paralicheniformis Bac84 with nine publicly available complete genomes of B. licheniformis and three genomes of B. paralicheniformis, revealed that all of the B. paralicheniformis strains in this study are more enriched in nonribosomal peptides (NRPs). We further report the first computationally identified trans-acyltransferase (trans-AT) nonribosomal peptide synthetase/polyketide synthase (PKS/ NRPS) cluster in strains of this species. Conclusions:B. paralicheniformis species have more genes associated with biosynthesis of antimicrobial bioactive compounds than other previously characterized species of B. licheniformis, which suggests that these species are better potential sources for novel antibiotics. Moreover, the genome of the Red Sea strain B. paralicheniformis Bac48 is more enriched in modular PKS genes compared to B. licheniformis strains and other B. paralicheniformis strains. This may be linked to adaptations that strains surviving in the Red Sea underwent to survive in the relatively hot and saline ecosystems.
  •  
3.
  • Othoum, Ghofran, et al. (författare)
  • Mining biosynthetic gene clusters in Virgibacillus genomes
  • 2019
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 20:1, s. 696-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND : Biosynthetic gene clusters produce a wide range of metabolites with activities that are of interest to the pharmaceutical industry. Specific interest is shown towards those metabolites that exhibit antimicrobial activities against multidrug-resistant bacteria that have become a global health threat. Genera of the phylum Firmicutes are frequently identified as sources of such metabolites, but the biosynthetic potential of its Virgibacillus genus is not known. Here, we used comparative genomic analysis to determine whether Virgibacillus strains isolated from the Red Sea mangrove mud in Rabigh Harbor Lagoon, Saudi Arabia, may be an attractive source of such novel antimicrobial agents. RESULTS : A comparative genomics analysis based on Virgibacillus dokdonensis Bac330, Virgibacillus sp. Bac332 and Virgibacillus halodenitrificans Bac324 (isolated from the Red Sea) and six other previously reported Virgibacillus strains was performed. Orthology analysis was used to determine the core genomes as well as the accessory genome of the nine Virgibacillus strains. The analysis shows that the Red Sea strain Virgibacillus sp. Bac332 has the highest number of unique genes and genomic islands compared to other genomes included in this study. Focusing on biosynthetic gene clusters, we show how marine isolates, including those from the Red Sea, are more enriched with nonribosomal peptides compared to the other Virgibacillus species. We also found that most nonribosomal peptide synthases identified in the Virgibacillus strains are part of genomic regions that are potentially horizontally transferred. CONCLUSIONS : The Red Sea Virgibacillus strains have a large number of biosynthetic genes in clusters that are not assigned to known products, indicating significant potential for the discovery of novel bioactive compounds. Also, having more modular synthetase units suggests that these strains are good candidates for experimental characterization of previously identified bioactive compounds as well. Future efforts will be directed towards establishing the properties of the potentially novel compounds encoded by the Red Sea specific trans-AT PKS/NRPS cluster and the type III PKS/NRPS cluster.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy