SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2350 OR L773:1471 2350 ;pers:(Gillberg Christopher)"

Sökning: L773:1471 2350 OR L773:1471 2350 > Gillberg Christopher

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gong, Xiaohong, et al. (författare)
  • An investigation of ribosomal protein L10 gene in autism spectrum disorders.
  • 2009
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Autism spectrum disorders (ASD) are severe neurodevelopmental disorders with the male:female ratio of 4:1, implying the contribution of X chromosome genetic factors to the susceptibility of ASD. The ribosomal protein L10 (RPL10) gene, located on chromosome Xq28, codes for a key protein in assembling large ribosomal subunit and protein synthesis. Two non-synonymous mutations of RPL10, L206M and H213Q, were identified in four boys with ASD. Moreover, functional studies of mutant RPL10 in yeast exhibited aberrant ribosomal profiles. These results provided a novel aspect of disease mechanisms for autism - aberrant processes of ribosome biosynthesis and translation. To confirm these initial findings, we re-sequenced RPL10 exons and quantified mRNA transcript level of RPL10 in our samples. METHODS: 141 individuals with ASD were recruited in this study. All RPL10 exons and flanking junctions were sequenced. Furthermore, mRNA transcript level of RPL10 was quantified in B lymphoblastoid cell lines (BLCL) of 48 patients and 27 controls using the method of SYBR Green quantitative PCR. Two sets of primer pairs were used to quantify the mRNA expression level of RPL10: RPL10-A and RPL10-B. RESULTS: No non-synonymous mutations were detected in our cohort. Male controls showed similar transcript level of RPL10 compared with female controls (RPL10-A, U=81, P=0.7; RPL10-B, U=61.5, P=0.2). We did not observe any significant difference in RPL10 transcript levels between cases and controls (RPL10-A, U=531, P=0.2; RPL10-B, U=607.5, P=0.7). CONCLUSION: Our results suggest that RPL10 has no major effect on the susceptibility to ASD.
  •  
2.
  • Delorme, Richard, et al. (författare)
  • Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls.
  • 2010
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 11:1:108
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The gene encoding carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (NOS1AP) is located on chromosome 1q23.3, a candidate region for schizophrenia, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Previous genetic and functional studies explored the role of NOS1AP in these psychiatric conditions, but only a limited number explored the sequence variability of NOS1AP. METHODS: We analyzed the coding sequence of NOS1AP in a large population (n = 280), including patients with schizophrenia (n = 72), ASD (n = 81) or OCD (n = 34), and in healthy volunteers controlled for the absence of personal or familial history of psychiatric disorders (n = 93). RESULTS: Two non-synonymous variations, V37I and D423N were identified in two families, one with two siblings with OCD and the other with two brothers with ASD. These rare variations apparently segregate with the presence of psychiatric conditions. CONCLUSIONS: Coding variations of NOS1AP are relatively rare in patients and controls. Nevertheless, we report the first non-synonymous variations within the human NOS1AP gene that warrant further genetic and functional investigations to ascertain their roles in the susceptibility to psychiatric disorders.
  •  
3.
  • Scheid, Isabelle, et al. (författare)
  • Heterozygous FA2H mutations in autism spectrum disorders
  • 2013
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Widespread abnormalities in white matter development are frequently reported in cases of autism spectrum disorders (ASD) and could be involved in the disconnectivity suggested in these disorders. Homozygous mutations in the gene coding for fatty-acid 2-hydroxylase (FA2H), an enzyme involved in myelin synthesis, are associated with complex leukodystrophies, but little is known about the functional impact of heterozygous FA2H mutations. We hypothesized that rare deleterious heterozygous mutations of FA2H might constitute risk factors for ASD. Methods We searched deleterious mutations affecting FA2H, by genotyping 1256 independent patients with ASD genotyped using Genome Wide SNP arrays, and also by sequencing in independent set of 186 subjects with ASD and 353 controls. We then explored the impact of the identified mutations by measuring FA2H enzymatic activity and expression, in transfected COS7 cells. Results One heterozygous deletion within 16q22.3-q23.1 including FA2H was observed in two siblings who share symptoms of autism and severe cognitive impairment, axial T2-FLAIR weighted MRI posterior periventricular white matter lesions. Also, two rare non-synonymous mutations (R113W and R113Q) were reported. Although predictive models suggested that R113W should be a deleterious, we did not find that FA2H activity was affected by expression of the R113W mutation in cultured COS cells. Conclusions While our results do not support a major role for FA2H coding variants in ASD, a screening of other genes related to myelin synthesis would allow us to better understand the role of non-neuronal elements in ASD susceptibility.
  •  
4.
  • Buxbaum, Joseph. D., et al. (författare)
  • Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly.
  • 2007
  • Ingår i: BMC Medical Genetics. - : Springer Science and Business Media LLC. - 1471-2350. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: BACKGROUND: Sotos syndrome is an overgrowth syndrome characterized by macrocephaly, advanced bone age, characteristic facial features, and learning disabilities, caused by mutations or deletions of the NSD1 gene, located at 5q35. Sotos syndrome has been described in a number of patients with autism spectrum disorders, suggesting that NSD1 could be involved in other cases of autism and macrocephaly. METHODS: We screened the NSD1 gene for mutations and deletions in 88 patients with autism spectrum disorders and macrocephaly (head circumference 2 standard deviations or more above the mean). Mutation analysis was performed by direct sequencing of all exons and flanking regions. Dosage analysis of NSD1 was carried out using multiplex ligation-dependent probe amplification. RESULTS: We identified three missense variants (R604L, S822C and E1499G) in one patient each, but none is within a functional domain. In addition, segregation analysis showed that all variants were inherited from healthy parents and in two cases were also present in unaffected siblings, indicating that they are probably nonpathogenic. No partial or whole gene deletions/duplications were observed. CONCLUSIONS: Our findings suggest that Sotos syndrome is a rare cause of autism spectrum disorders and that screening for NSD1 mutations and deletions in patients with autism and macrocephaly is not warranted in the absence of other features of Sotos syndrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy