SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1471 2407 OR L773:1471 2407 ;pers:(Sundström Magnus)"

Sökning: L773:1471 2407 OR L773:1471 2407 > Sundström Magnus

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mayrhofer, Markus, et al. (författare)
  • 1p36 deletion is a marker for tumour dissemination in microsatellite stable stage II-III colon cancer
  • 2014
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407 .- 1471-2407. ; 14, s. 872-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The clinical behaviour of colon cancer is heterogeneous. Five-year overall survival is 50-65% with all stages included. Recurring somatic chromosomal alterations have been identified and some have shown potential as markers for dissemination of the tumour, which is responsible for most colon cancer deaths. We investigated 115 selected stage II-IV primary colon cancers for associations between chromosomal alterations and tumour dissemination. Methods: Follow-up was at least 5 years for stage II-III patients without distant recurrence. Affymetrix SNP 6.0 microarrays and allele-specific copy number analysis were used to identify chromosomal alterations. Fisher's exact test was used to associate alterations with tumour dissemination, detected at diagnosis (stage IV) or later as recurrent disease (stage II-III). Results: Loss of 1p36.11-21 was associated with tumour dissemination in microsatellite stable tumours of stage II-IV (odds ratio = 5.5). It was enriched to a similar extent in tumours with distant recurrence within stage II and stage III subgroups, and may therefore be used as a prognostic marker at diagnosis. Loss of 1p36.11-21 relative to average copy number of the genome showed similar prognostic value compared to absolute loss of copies. Therefore, the use of relative loss as a prognostic marker would benefit more patients by applying also to hyperploid cancer genomes. The association with tumour dissemination was supported by independent data from the The Cancer Genome Atlas. Conclusion: Deletions on 1p36 may be used to guide adjuvant treatment decisions in microsatellite stable colon cancer of stages II and III.
  •  
2.
  • Sundström, Magnus, et al. (författare)
  • KRAS analysis in colorectal carcinoma : analytical aspects of Pyrosequencing and allele-specific PCR in clinical practice
  • 2010
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407 .- 1471-2407. ; 10, s. 660-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Epidermal growth factor receptor inhibitor therapy is now approved for treatment of metastatic colorectal carcinomas (CRC) in patients with tumors lacking KRAS mutations. Several procedures to detect KRAS mutations have been developed. However, the analytical sensitivity and specificity of these assays on routine clinical samples are not yet fully characterised.Methods: The practical aspects and clinical applicability of a KRAS-assay based on Pyrosequencing were evaluated in a series of 314 consecutive CRC cases submitted for diagnostic KRAS analysis. The performance of Pyrosequencing compared to allele-specific, real-time PCR was then explored by a direct comparison of CE-IVD-marked versions of Pyrosequencing and TheraScreen (DxS) KRAS assays for a consecutive subset (n = 100) of the 314 clinical CRC samples.Results: Using Pyrosequencing, 39% of the 314 CRC samples were found KRAS-mutated and several of the mutations (8%) were located in codon 61. To explore the analytical sensitivity of the Pyrosequencing assay, mutated patient DNA was serially diluted with wild-type patient DNA. Dilutions corresponding to 1.25-2.5% tumor cells still revealed detectable mutation signals. In clinical practice, our algorithm for KRAS analysis includes a reanalysis of samples with low tumor cell content (< 10%, n = 56) using an independent assay (allele-specific PCR, DxS). All mutations identified by Pyrosequencing were then confirmed and, in addition, one more mutated sample was identified in this subset of 56 samples. Finally, a direct comparison of the two technologies was done by re-analysis of a subset (n = 100) of the clinical samples using CE-IVD-marked versions of Pyrosequencing and TheraScreen KRAS assays in a single blinded fashion. The number of samples for which the KRAS codon 12/13 mutation status could be defined using the Pyrosequencing or the TheraScreen assay was 94 and 91, respectively, and both assays detected the same number of codon 12 and 13 mutations.Conclusions: KRAS mutation detection using Pyrosequencing was evaluated on a consecutive set of clinical CRC samples. Pyrosequencing provided sufficient analytical sensitivity and specificity to assess the mutation status in routine formalin-fixed CRC samples, even in tissues with a low tumor cell content.
  •  
3.
  • Birgisson, Helgi, et al. (författare)
  • Microsatellite instability and mutations in BRAF and KRAS are significant predictors of disseminated disease in colon cancer
  • 2015
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407 .- 1471-2407. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Molecular alterations are well studied in colon cancer, however there is still need for an improved understanding of their prognostic impact. This study aims to characterize colon cancer with regard to KRAS, BRAF, and PIK3CA mutations, microsatellite instability (MSI), and average DNA copy number, in connection with tumour dissemination and recurrence in patients with colon cancer. Methods: Disease stage II-IV colon cancer patients (n = 121) were selected. KRAS, BRAF, and PIK3CA mutation status was assessed by pyrosequencing and MSI was determined by analysis of mononucleotide repeat markers. Genome-wide average DNA copy number and allelic imbalance was evaluated by SNP array analysis. Results: Patients with mutated KRAS were more likely to experience disease dissemination (OR 2.75; 95% CI 1.28-6.04), whereas the opposite was observed for patients with BRAF mutation (OR 0.34; 95% 0.14-0.81) or MSI (OR 0.24; 95% 0.09-0.64). Also in the subset of patients with stage II-III disease, both MSI (OR 0.29; 95% 0.10-0.86) and BRAF mutation (OR 0.32; 95% 0.16-0.91) were related to lower risk of distant recurrence. However, average DNA copy number and PIK3CA mutations were not associated with disease dissemination. Conclusions: The present study revealed that tumour dissemination is less likely to occur in colon cancer patients with MSI and BRAF mutation, whereas the presence of a KRAS mutation increases the likelihood of disseminated disease.
  •  
4.
  • Padhan, Narendra, et al. (författare)
  • High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer
  • 2016
  • Ingår i: BMC Cancer. - : Springer Science and Business Media LLC. - 1471-2407 .- 1471-2407. ; 16
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The progression of colorectal cancer (CRC) involves recurrent amplifications/mutations in the epidermal growth factor receptor (EGFR) and downstream signal transducers of the Ras pathway, KRAS and BRAF. Whether genetic events predicted to result in increased and constitutive signaling indeed lead to enhanced biological activity is often unclear and, due to technical challenges, unexplored. Here, we investigated proliferative signaling in CRC using a highly sensitive method for protein detection. The aim of the study was to determine whether multiple changes in proliferative signaling in CRC could be combined and exploited as a "complex biomarker" for diagnostic purposes. Methods: We used robotized capillary isoelectric focusing as well as conventional immunoblotting for the comprehensive analysis of epidermal growth factor receptor signaling pathways converging on extracellular regulated kinase 1/2 (ERK1/2), AKT, phospholipase C gamma 1 (PLC gamma 1) and c-SRC in normal mucosa compared with CRC stage II and IV. Computational analyses were used to test different activity patterns for the analyzed signal transducers. Results: Signaling pathways implicated in cell proliferation were differently dysregulated in CRC and, unexpectedly, several were downregulated in disease. Thus, levels of activated ERK1 (pERK1), but not pERK2, decreased in stage II and IV while total ERK1/2 expression remained unaffected. In addition, c-SRC expression was lower in CRC compared with normal tissues and phosphorylation on the activating residue Y418 was not detected. In contrast, PLC gamma 1 and AKT expression levels were elevated in disease. Immunoblotting of the different signal transducers, run in parallel to capillary isoelectric focusing, showed higher variability and lower sensitivity and resolution. Computational analyses showed that, while individual signaling changes lacked predictive power, using the combination of changes in three signaling components to create a "complex biomarker" allowed with very high accuracy, the correct diagnosis of tissues as either normal or cancerous. Conclusions: We present techniques that allow rapid and sensitive determination of cancer signaling that can be used to differentiate colorectal cancer from normal tissue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy