SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1479 683X ;pers:(Eriksson Jan W.)"

Sökning: L773:1479 683X > Eriksson Jan W.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burén, Jonas, et al. (författare)
  • Dexamethasone impairs insulin signalling and glucose transport by depletion of insulin receptor substrate-1, phosphatidylinositol 3-kinase and protein kinase B in primary cultured rat adipocytes.
  • 2002
  • Ingår i: European Journal of Endocrinology. - : European Society of Endocrinology. - 0804-4643 .- 1479-683X. ; 146:3, s. 419-29
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Glucocorticoid excess leads to insulin resistance. This study explores the effects of glucocorticoids on the glucose transport system and insulin signalling in rat adipocytes. The interaction between glucocorticoids and high levels of insulin and glucose is also addressed.DESIGN AND METHODS: Isolated rat adipocytes were cultured for 24 h at different glucose concentrations (5 and 15 mmol/l) with or without the glucocorticoid analogue dexamethasone (0.3 micromol/l) and insulin (10(4) microU/ml). After the culture period, the cells were washed and then basal and insulin-stimulated glucose uptake, insulin binding and lipolysis as well as cellular content of insulin signalling proteins (insulin receptor substrate-1 (IRS-1), IRS-2, phosphatidylinositol 3-kinase (PI3-K) and protein kinase B (PKB)) and glucose transporter isoform GLUT4 were measured.RESULTS: Dexamethasone in the medium markedly decreased both basal and insulin-stimulated glucose uptake at both 5 and 15 mmol/l glucose (by approximately 40-50%, P<0.001 and P<0.05 respectively). Combined long-term treatment with insulin and dexamethasone exerted additive effects in decreasing basal, and to a lesser extent insulin-stimulated, glucose uptake capacity (P<0.05) compared with dexamethasone alone, but this was seen only at high glucose (15 mmol/l). Insulin binding was decreased (by approximately 40%, P<0.05) in dexamethasone-treated cells independently of surrounding glucose concentration. Following dexamethasone treatment a approximately 75% decrease (P<0.001) in IRS-1 expression and an increase in IRS-2 (by approximately 150%, P<0.001) was shown. Dexamethasone also induced a subtle decrease in PI3-K (by approximately 20%, P<0.01) and a substantial decrease in PKB content (by approximately 45%, P<0.001). Insulin-stimulated PKB phosphorylation was decreased (by approximately 40%, P<0.01) in dexamethasone-treated cells. Dexamethasone did not alter the amount of total cellular membrane-associated GLUT4 protein. The effects of dexamethasone per se on glucose transport and insulin signalling proteins were mainly unaffected by the surrounding glucose and insulin levels. Dexamethasone increased the basal lipolytic rate (approximately 4-fold, P<0.05), but did not alter the antilipolytic effect of insulin.CONCLUSIONS: These results suggest that glucocorticoids, independently of the surrounding glucose and insulin concentration, impair glucose transport capacity in fat cells. This is not due to alterations in GLUT4 abundance. Instead dexamethasone-induced insulin resistance may be mediated via reduced cellular content of IRS-1 and PKB accompanied by a parallel reduction in insulin-stimulated activation of PKB.
  •  
2.
  • Burén, Jonas, et al. (författare)
  • High glucose and insulin in combination cause insulin receptor substrate-1 and -2 depletion and protein kinase B desensitisation in primary cultured rat adipocytes : possible implications for insulin resistance in type 2 diabetes.
  • 2003
  • Ingår i: European Journal of Endocrinology. - : European Society of Endocrinology. - 0804-4643 .- 1479-683X. ; 148:1, s. 157-67
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The purpose of this study was to investigate the cellular effects of long-term exposure to high insulin and glucose levels on glucose transport and insulin signalling proteins.DESIGN AND METHODS: Rat adipocytes were cultured for 24 h in different glucose concentrations with 10(4) microU/ml of insulin or without insulin. After washing, (125)I-insulin binding, basal and acutely insulin-stimulated d-[(14)C]glucose uptake, and insulin signalling proteins and glucose transporter 4 (GLUT4) were assessed.RESULTS: High glucose (15 and 25 mmol/l) for 24 h induced a decrease in basal and insulin-stimulated glucose uptake compared with control cells incubated in low glucose (5 or 10 mmol/l). Twenty-four hours of insulin treatment decreased insulin binding capacity by approximately 40%, and shifted the dose-response curve for insulin's acute effect on glucose uptake 2- to 3-fold to the right. Twenty-four hours of insulin treatment reduced basal and insulin-stimulated glucose uptake only in the presence of high glucose (by approximately 30-50%). At high glucose, insulin receptor substrate-1 (IRS-1) expression was downregulated by approximately 20-50%, whereas IRS-2 was strongly upregulated by glucose levels of 10 mmol/l or more (by 100-400%). Insulin treatment amplified the suppression of IRS-1 when combined with high glucose and also IRS-2 expression was almost abolished. Twenty-four hours of treatment with high glucose or insulin, alone or in combination, shifted the dose-response curve for insulin's effect to acutely phosphorylate protein kinase B (PKB) to the right. Fifteen mmol/l glucose increased GLUT4 in cellular membranes (by approximately 140%) compared with 5 mmol/l but this was prevented by a high insulin concentration.CONCLUSIONS: Long-term exposure to high glucose per se decreases IRS-1 but increases IRS-2 content in rat adipocytes and it impairs glucose transport capacity. Treatment with high insulin downregulates insulin binding capacity and, when combined with high glucose, it produces a marked depletion of IRS-1 and -2 content together with an impaired sensitivity to insulin stimulation of PKB activity. These mechanisms may potentially contribute to insulin resistance in type 2 diabetes.
  •  
3.
  • Eriksson, Jan W, et al. (författare)
  • Tissue-specific glucose partitioning and fat content in prediabetes and type 2 diabetes: whole-body PET/MRI during hyperinsulinemia
  • 2021
  • Ingår i: European journal of endocrinology. - : Bioscientifica. - 0804-4643 .- 1479-683X. ; 184:6, s. 879-899
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: To obtain direct quantifications of glucose turnover, volumes an d fat content of several tissues in the development of type 2 diabetes (T2D) using a novel integrated a pproach for whole-body imaging. Design and methods: Hyperinsulinemic-euglycemic clamps and simultaneous whole-body integrated [18F]FDG-PET/MRI with automated analyses were performed in control (n = 12), prediabetes (n = 16) and T2D (n = 13) subjects matched for age, sex and BMI. Results: Whole-body glucose uptake (Rd) was reduced by approximately 25% in T2D vs control subjects, and partitioning to brain was increased from 3.8% of total Rd in co ntrols to 7.1% in T2D. In liver, subcutaneous AT, thigh muscle, total tissue glucose metabolic rates (MRglu) and their % of total Rd were reduced in T2D compared to contr ol subjects. The prediabetes group had intermediate findings. Total MRglu in heart, visceral AT, gluteus and calf muscle was similar across groups. Whole-body insulin sensitivity asses sed as glucose infusion rate correlated with liver MR glu but inversely with brain MRglu. Liver fat content correlated with MRglu in brain but inversely with MRglu in other tissues. Calf muscle fat was inversely associated with MR glu only in the same muscle group. Conclusions: This integrated imaging approach provides detailed quantification of tissue-specific glucose metabolism. During T2D development, insulin-stimulated glucose disposal is impaired and increasingly shifted away from muscle, liver and fat toward the brain. Altered glucose handling in the brain and liver fat accumulation may aggravate insulin resistance in several organs. © 2021 BioScientifica Ltd.. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy