SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1528 0020 ;lar1:(slu)"

Sökning: L773:1528 0020 > Sveriges Lantbruksuniversitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Globisch, Maria A., et al. (författare)
  • Immunothrombosis and vascular heterogeneity in cerebral cavernous malformation
  • 2022
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 140:20, s. 2154-2169
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral cavernous malformation (CCM) is a neurovascular disease that results in various neurological symptoms. Thrombi have been reported in surgically resected CCM patient biopsies, but the molecular signatures of these thrombi remain elusive. Here, we investigated the kinetics of thrombi formation in CCM and how thrombi affect the vasculature and contribute to cerebral hypoxia. We used RNA sequencing to investigate the transcriptome of mouse brain endothelial cells with an inducible endothelial-specific Ccm3 knock-out (Ccm3-iECKO). We found that Ccm3-deficient brain endothelial cells had a higher expression of genes related to the coagulation cascade and hypoxia when compared with wild-type brain endothelial cells. Immunofluorescent assays identified key molecular signatures of thrombi such as fibrin, von Willebrand factor, and activated platelets in Ccm3-iECKO mice and human CCM biopsies. Notably, we identified polyhedrocytes in Ccm3-iECKO mice and human CCM biopsies and report it for the first time. We also found that the parenchyma surrounding CCM lesions is hypoxic and that more thrombi correlate with higher levels of hypoxia. We created an in vitro model to study CCM pathology and found that human brain endothelial cells deficient for CCM3 expressed elevated levels of plasminogen activator inhibitor-1 and had a redistribution of von Willebrand factor. With transcriptomics, comprehensive imaging, and an in vitro CCM preclinical model, this study provides experimental evidence that genes and proteins related to the coagulation cascade affect the brain vasculature and promote neurological side effects such as hypoxia in CCMs. This study supports the concept that antithrombotic therapy may be beneficial for patients with CCM.
  •  
2.
  • Pejler, Gunnar (författare)
  • A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 117, s. 736-744
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelet aggregation and acute inflammation are key processes in vertebrate defense to a skin injury. Recent studies uncovered the mediation of 2 serine proteases, cathepsin G and chymase, in both mechanisms. Working with a mouse model of acute inflammation, we revealed that an exogenous salivary protein of Ixodes ricinus, the vector of Lyme disease pathogens in Europe, extensively inhibits edema formation and influx of neutrophils in the inflamed tissue. We named this tick salivary gland secreted effector as I ricinus serpin-2 (IRS-2), and we show that it primarily inhibits cathepsin G and chymase, while in higher molar excess, it affects thrombin activity as well. The inhibitory specificity was explained using the crystal structure, determined at a resolution of 1.8 angstrom. Moreover, we disclosed the ability of IRS-2 to inhibit cathepsin G-induced and thrombin-induced platelet aggregation. For the first time, an ectoparasite protein is shown to exhibit such pharmacological effects and target specificity. The stringent specificity and biological activities of IRS-2 combined with the knowledge of its structure can be the basis for the development of future pharmaceutical applications. (Blood. 2011;117(2):736-744)
  •  
3.
  • Pejler, Gunnar, et al. (författare)
  • Mast cell proteases: multifaceted regulators of inflammatory disease
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 115, s. 4981-4990
  • Forskningsöversikt (refereegranskat)abstract
    • Mast cells (MCs) are currently receiving increased attention among the scientific community, largely because of the recent identification of crucial functions for MCs in a variety of disorders. However, it is in many cases not clear exactly how MCs contribute in the respective settings. MCs express extraordinarily high levels of a number of proteases of chymase, tryptase, and carboxypeptidase A type, and these are stored in high amounts as active enzymes in the MC secretory granules. Hence, MC degranulation leads to the massive release of fully active MC proteases, which probably have a major impact on any condition in which MC degranulation occurs. Indeed, the recent generation and evaluation of mouse strains lacking individual MC proteases have indicated crucial contributions of these to a number of different disorders. MC proteases may thus account for many of the effects ascribed to MCs and are currently emerging as promising candidates for treatment of MC-driven disease. In this review, we discuss these findings. (Blood.2010;115(24):4981-4990)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy