SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1528 0020 ;pers:(Bryceson YT)"

Sökning: L773:1528 0020 > Bryceson YT

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bryceson, YT, et al. (författare)
  • A prospective evaluation of degranulation assays in the rapid diagnosis of familial hemophagocytic syndromes
  • 2012
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 119:12, s. 2754-2763
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is a life-threatening disorder of immune regulation caused by defects in lymphocyte cytotoxicity. Rapid differentiation of primary, genetic forms from secondary forms of hemophagocytic lymphohistiocytosis (HLH) is crucial for treatment decisions. We prospectively evaluated the performance of degranulation assays based on surface up-regulation of CD107a on natural killer (NK) cells and cytotoxic T lymphocytes in a cohort of 494 patients referred for evaluation for suspected HLH. Seventy-five of 77 patients (97%) with FHL3-5 and 11 of 13 patients (85%) with Griscelli syndrome type 2 or Chediak-Higashi syndrome had abnormal resting NK-cell degranulation. In contrast, NK-cell degranulation was normal in 14 of 16 patients (88%) with X-linked lymphoproliferative disease and in 8 of 14 patients (57%) with FHL2, who were identified by diminished intracellular SLAM-associated protein (SAP), X-linked inhibitor of apoptosis protein (XIAP), and perforin expression, respectively. Among 66 patients with a clinical diagnosis of secondary HLH, 13 of 59 (22%) had abnormal resting NK-cell degranulation, whereas 0 of 43 had abnormal degranulation using IL-2–activated NK cells. Active disease or immunosuppressive therapy did not impair the assay performance. Overall, resting NK-cell degranulation below 5% provided a 96% sensitivity for a genetic degranulation disorder and a specificity of 88%. Therefore, degranulation assays allow a rapid and reliable classification of patients, benefiting treatment decisions.
  •  
2.
  • Bryceson, YT, et al. (författare)
  • Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients
  • 2007
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 110:6, s. 1906-1915
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is typically an early onset, fatal disease characterized by a sepsislike illness with cytopenia, hepatosplenomegaly, and deficient lymphocyte cytotoxicity. Disease-causing mutations have been identified in genes encoding perforin (PRF1/FHL2), Munc13-4 (UNC13D/FHL3), and syntaxin-11 (STX11/FHL4). In contrast to mutations leading to loss of perforin and Munc13-4 function, it is unclear how syntaxin-11 loss-of-function mutations contribute to disease. We show here that freshly isolated, resting natural killer (NK) cells and CD8+ T cells express syntaxin-11. In infants, NK cells are the predominant perforin-containing cell type. NK cells from FHL4 patients fail to degranulate when encountering susceptible target cells. Unexpectedly, IL-2 stimulation partially restores degranulation and cytotoxicity by NK cells, which could explain the less severe disease progression observed in FHL4 patients, compared with FHL2 and FHL3 patients. Since the effector T-cell compartment is still immature in infants, our data suggest that the observed defect in NK-cell degranulation may contribute to the pathophysiology of FHL, that evaluation of NK-cell degranulation in suspected FHL patients may facilitate diagnosis, and that these new insights may offer novel therapeutic possibilities.
  •  
3.
  • Bryceson, YT, et al. (författare)
  • Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors
  • 2009
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 114:13, s. 2657-2666
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK) cells provide innate control of infected and neoplastic cells. Multiple receptors have been implicated in natural cytotoxicity, but their individual contribution remains unclear. Here, we studied the activation of primary, resting human NK cells by Drosophila cells expressing ligands for receptors NKG2D, DNAM-1, 2B4, CD2, and LFA-1. Each receptor was capable of inducing inside-out signals for LFA-1, promoting adhesion, but none induced degranulation. Rather, release of cytolytic granules required synergistic activation through coengagement of receptors, shown here for NKG2D and 2B4. Although engagement of NKG2D and 2B4 was not sufficient for strong target cell lysis, collective engagement of LFA-1, NKG2D, and 2B4 defined a minimal requirement for natural cytotoxicity. Remarkably, inside-out signaling induced by each one of these receptors, including LFA-1, was inhibited by receptor CD94/NKG2A binding to HLA-E. Strong inside-out signals induced by the combination of NKG2D and 2B4 or by CD16 could overcome CD94/NKG2A inhibition. In contrast, degranulation induced by these receptors was still subject to inhibition by CD94/NKG2A. These results reveal multiple layers in the activation pathway for natural cytotoxicity and that steps as distinct as inside-out signaling to LFA-1 and signals for granule release are sensitive to inhibition by CD94/NKG2A.
  •  
4.
  • Bryceson, YT, et al. (författare)
  • Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion
  • 2006
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 107:1, s. 159-166
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshly isolated, resting natural killer (NK) cells are generally less lytic against target cells than in vitro interleukin 2 (IL-2)-activated NK cells. To investigate the basis for this difference, the contribution of several receptors to activation of human NK cells was examined. Target-cell lysis by IL-2-activated NK cells in a redirected, antibody-dependent cytotoxicity assay was triggered by a number of receptors. In contrast, cytotoxicity by resting NK cells was induced only by CD16, and not by NKp46, NKG2D, 2B4 (CD244), DNAM-1 (CD226), or CD2. Calcium flux in resting NK cells was induced with antibodies to CD16 and, to a weaker extent, antibodies to NKp46 and 2B4. Although NKp46 did not enhance CD16-mediated calcium flux, it synergized with all other receptors. 2B4 synergized with 3 other receptors, NKG2D and DNAM-1 each synergized with 2 other receptors, and CD2 synergized with NKp46 only. Resting NK cells were induced to secrete tumor necrosis factor α (TNF-α) and interferon γ (IFN-γ), and to kill target cells by engagement of specific, pair-wise combinations of receptors. Therefore, natural cytotoxicity by resting NK cells is induced only by mutual costimulation of nonactivating receptors. These results reveal distinct and specific patterns of synergy among receptors on resting NK cells.
  •  
5.
  •  
6.
  •  
7.
  • Fauriat, C, et al. (författare)
  • Regulation of human NK-cell cytokine and chemokine production by target cell recognition
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 115:11, s. 2167-2176
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural killer (NK)–cell recognition of infected or neoplastic cells can induce cytotoxicity and cytokine secretion. So far, it has been difficult to assess the relative contribution of multiple NK-cell activation receptors to cytokine and chemokine production upon target cell recognition. Using Drosophila cells expressing ligands for the NK-cell receptors LFA-1, NKG2D, DNAM-1, 2B4, and CD16, we studied the minimal requirements for secretion by freshly isolated, human NK cells. Target cell stimulation induced secretion of predominately proinflammatory cytokines and chemokines. Release of chemokines MIP-1α, MIP-1β, and RANTES was induced within 1 hour of stimulation, whereas release of TNF-α and IFN-γ occurred later. Engagement of CD16, 2B4, or NKG2D sufficed for chemokine release, whereas induction of TNF-α and IFN-γ required engagement of additional receptors. Remarkably, our results revealed that, upon target cell recognition, CD56dim NK cells were more prominent cytokine and chemokine producers than CD56bright NK cells. The present data demonstrate how specific target cell ligands dictate qualitative and temporal aspects of NK-cell cytokine and chemokine responses. Conceptually, the results point to CD56dim NK cells as an important source of cytokines and chemokines upon recognition of aberrant cells, producing graded responses depending on the multiplicity of activating receptors engaged.
  •  
8.
  • Gutierrez-Perez, I, et al. (författare)
  • Single-cell dissection of monosomy 7 syndromes
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 130:25, s. 2693-2695
  • Tidskriftsartikel (refereegranskat)
  •  
9.
  •  
10.
  • Meeths, M, et al. (författare)
  • Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D
  • 2011
  • Ingår i: Blood. - Washington : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 118:22, s. 5783-5793
  • Tidskriftsartikel (refereegranskat)abstract
    • Familial hemophagocytic lymphohistiocytosis (FHL) is an autosomal recessive, often-fatal hyperinflammatory disorder. Mutations in PRF1, UNC13D, STX11, and STXBP2 are causative of FHL2, 3, 4, and 5, respectively. In a majority of suspected FHL patients from Northern Europe, sequencing of exons and splice sites of such genes required for lymphocyte cytotoxicity revealed no or only monoallelic UNC13D mutations. Here, in 21 patients, we describe 2 pathogenic, noncoding aberrations of UNC13D. The first is a point mutation localized in an evolutionarily conserved region of intron 1. This mutation selectively impairs UNC13D transcription in lymphocytes, abolishing Munc13-4 expression. The second is a 253-kb inversion straddling UNC13D, affecting the 3'-end of the transcript and likewise abolishing Munc13-4 expression. Carriership of the intron 1 mutation was found in patients across Europe, whereas carriership of the inversion was limited to Northern Europe. Notably, the latter aberration represents the first description of an autosomal recessive human disease caused by an inversion. These findings implicate an intronic sequence in cell-type specific expression of Munc13-4 and signify variations outside exons and splice sites as a common cause of FHL3. Based on these data, we propose a strategy for targeted sequencing of evolutionary conserved noncoding regions for the diagnosis of primary immunodeficiencies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy