SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1530 6860 ;pers:(Welsh Nils)"

Sökning: L773:1530 6860 > Welsh Nils

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hägerkvist, Robert, et al. (författare)
  • Amelioration of diabetes by imatinib mesylate (Gleevec) : role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning
  • 2007
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 21:2, s. 618-628
  • Tidskriftsartikel (refereegranskat)abstract
    • It was recently reported that tyrosine kinase inhibitor imatinib mesylate (Gleevec) improves Type 2 diabetes, possibly by decreasing insulin resistance. However, as both Type 2 and Type 1 diabetes are characterized by beta-cell dysfunction and death, we investigated whether imatinib counteracts diabetes by maintaining beta-cell function. We observed that imatinib counteracted diabetes in two animal models, the streptozotocin-injected mouse and the nonobese diabetes mouse, and that this was paralleled by a partial preservation of the beta-cell mass. In addition, imatinib decreased the death of human beta-cells in vitro when exposed to NO, cytokines, and streptozotocin. The imatinib effect was mimicked by siRNA-mediated knockdown of c-Abl mRNA. Imatinib enhanced beta-cell survival by promoting a state similar to ischemic preconditioning, as evidenced by NF-kappaB activation, increased NO and reactive oxygen species production, and depolarization of the inner mitochondrial membrane. Imatinib did not suppress islet cell death in the presence of an NF-kappaB inhibitor, suggesting that NF-kappaB activation is a necessary step in the antiapoptotic action of imatinib. We conclude that imatinib mediates beta-cell survival and that this could contribute to the beneficial effects observed in diabetes.
  •  
2.
  • Turpaev, Kyril, et al. (författare)
  • The protein synthesis inhibitor brusatol normalizes high-fat diet-induced glucose intolerance in male C57BL/6 mice : role of translation factor eIF5A hypusination
  • 2019
  • Ingår i: The FASEB Journal. - : FEDERATION AMER SOC EXP BIOL. - 0892-6638 .- 1530-6860. ; 33:3, s. 3510-3522
  • Tidskriftsartikel (refereegranskat)abstract
    • The naturally occurring quassinoid compound brusatol improves the survival of insulin-producing cells when exposed to the proinflammatory cytokines IL-1b and IFN-g in vitro. The aim of the present study was to investigatewhetherbrusatol also promotes beneficial effects inmice fed a high-fat diet (HFD), and if so, to study the mechanisms by which brusatol acts. In vivo, we observed that the impaired glucose tolerance of HFD-fed male C57BL/ 6micewas counteracted by a 2wk treatmentwith brusatol. Brusatol treatment improvedbothb-cell function and peripheral insulin sensitivity of HFD-fed mice. In vitro, brusatol inhibited b-cell total protein and proinsulin biosynthesis, withanED50 of 40nM. In linewith this, brusatol blocked cytokine-inducediNOSprotein expression via inhibition of iNOS mRNA translation. Brusatol may have affected protein synthesis, at least in part, via inhibition of eukaryotic initiation factor 5A (eIF5A) hypusination, as eIF5A spermidine association and hypusinationin RIN-5AHcellswas reducedinadose-andtime-dependentmanner. The eIF5AhypusinationinhibitorGC7 promoted a similar effect. Both brusatol and GC7 protected rat RIN-5AH cells against cytokine-induced cell death. Brusatol reduced eIF5A hypusination and cytokine-induced cell death in EndoC-bH1 cells as well. Finally, hypusinated eIF5A was reduced in vivo by brusatol in islet endocrine and endothelial islet cells of mice fed anHFD. The results of the present study suggest that brusatol improves glucose intolerance in mice fed an HFD, possibly by inhibiting protein biosynthesis and eIF5A hypusination.-Turpaev, K., Krizhanovskii, C., Wang, X., Sargsyan, E., Bergsten, P., Welsh, N. The protein synthesis inhibitor brusatol normalizes high-fat diet-induced glucose intolerance in male C57BL/ 6 mice: role of translation factor eIF5A hypusination. FASEB J. 33, 3510-3522 (2019). www.fasebj.org
  •  
3.
  • Wang, Xuan, 1984-, et al. (författare)
  • ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells
  • 2019
  • Ingår i: The FASEB Journal. - : FEDERATION AMER SOC EXP BIOL. - 0892-6638 .- 1530-6860. ; 33:1, s. 88-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc finger BED domain containing protein 6 (Zbed6) has evolved from a domesticated DNA transposon and encodes a transcription factor unique to placental mammals. The aim of the present study was to investigate further the role of ZBED6 in insulin-producing cells, using mouse MIN6 cells, and to evaluate the effects of Zbed6 knockdown on basal -cell functions, such as morphology, transcriptional regulation, insulin content, and release. Zbed6-silenced cells and controls were characterized with a range of methods, including RNA sequencing, chromatin immunoprecipitation sequencing, insulin content and release, subplasma membrane Ca2+ measurements, cAMP determination, and morphologic studies. More than 700 genes showed differential expression in response to Zbed6 knockdown, which was paralleled by increased capacity to generate cAMP, as well as by augmented subplasmalemmal calcium concentration and insulin secretion in response to glucose stimulation. We identified >4000 putative ZBED6-binding sites in the MIN6 genome, with an enrichment of ZBED6 sites at upregulated genes, such as the -cell transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and Nk6 homeobox 1. We also observed altered morphology/growth patterns, as indicated by increased cell clustering, and in the appearance of axon-like Neurofilament, medium polypeptide and tubulin 3, class III-positive protrusions. We conclude that ZBED6 acts as a transcriptional regulator in MIN6 cells and that its activity suppresses insulin production, cell aggregation, and neuronal-like differentiation.Wang, X., Jiang, L., Wallerman, O., Younis, S., Yu, Q., Klaesson, A., Tengholm, A., Welsh, N., Andersson, L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells.
  •  
4.
  • Younis, Shady, et al. (författare)
  • The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells
  • 2020
  • Ingår i: The FASEB Journal. - 0892-6638 .- 1530-6860. ; 34:8, s. 10250-10266
  • Tidskriftsartikel (refereegranskat)abstract
    • The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5'-GGCTCG-3' in intron 1 of Igf2. Deletion of this motif (Igf2ΔGGCT ) or complete ablation of Zbed6 leads to ~20-fold upregulation of the IGF2 protein. Quantitative proteomics revealed an activation of Ras signaling pathway in both Zbed6-/- and Igf2ΔGGCT myoblasts, and a significant enrichment of mitochondrial membrane proteins among proteins showing altered expression in Zbed6-/- myoblasts. Both Zbed6-/- and Igf2ΔGGCT myoblasts showed a faster growth rate and developed myotube hypertrophy. These cells exhibited an increased O2 consumption rate, due to IGF2 upregulation. Transcriptome analysis revealed ~30% overlap between differentially expressed genes in Zbed6-/- and Igf2ΔGGCT myotubes, with an enrichment of upregulated genes involved in muscle development. In contrast, ZBED6-overexpression in myoblasts led to cell apoptosis, cell cycle arrest, reduced mitochondrial activities, and ceased myoblast differentiation. The similarities in growth and differentiation phenotypes observed in Zbed6-/- and Igf2ΔGGCT myoblasts demonstrates that ZBED6 affects mitochondrial activity and myogenesis largely through its regulation of IGF2 expression. This study adds new insights how the ZBED6-Igf2 axis affects muscle metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy