SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1532 8600 ;pers:(Renström Frida)"

Sökning: L773:1532 8600 > Renström Frida

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Burén, Jonas, et al. (författare)
  • In vitro reversal of hyperglycemia normalizes insulin action in fat cells from type 2 diabetes patients : is cellular insulin resistance caused by glucotoxicity in vivo?
  • 2003
  • Ingår i: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 52:2, s. 239-45
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic hyperglycemia promotes the development of insulin resistance. The aim of this study was to investigate whether cellular insulin resistance is secondary to the diabetic state in human type 2 diabetes. Subcutaneous fat biopsies were taken from 3 age-, sex-, and body mass index (BMI)-matched groups with 10 subjects in each group: type 2 diabetes patients with either good (hemoglobin A(1c) [HbA(1c)] < 7%, G) or poor (HbA(1c) > 7.5%, P) metabolic control and healthy control subjects (C). Insulin action in vitro was studied by measurements of glucose uptake both directly after cell isolation and following a 24-hour incubation at a physiological glucose level (6 mmol/L). The relationship with insulin action in vivo was addressed by employing the euglycemic clamp technique. Freshly isolated fat cells from type 2 diabetes patients with poor metabolic control had approximately 55% lower maximal insulin response (1,000 microU/mL) on glucose uptake (P <.05) compared to C. Cells from P were more insulin-resistant (P <.05) than cells from G at a low (5 microU/mL) but not at a high (1,000 microU/mL) insulin concentration, suggesting insulin insensitivity. However, following 24 hours of incubation at physiological glucose levels, insulin resistance was completely reversed in the diabetes cells and no differences in insulin-stimulated glucose uptake were found among the 3 groups. Insulin sensitivity in vivo assessed with hyperinsulinemic, euglycemic clamp (M-value) was significantly associated with insulin action on glucose uptake in fresh adipocytes in vitro (r = 0.50, P <.01). Fasting blood glucose at the time of biopsy and HbA(1c), but not serum insulin, were negatively correlated to insulin's effect to stimulate glucose uptake in vitro (r = -0.36, P =.064 and r = - 0.41, P <.05, respectively) in all groups taken together. In the in vivo situation, fasting blood glucose, HbA(1c), and serum insulin were all negatively correlated to insulin sensitivity (M-value; r = -0.62, P<.001, r= -0.61, P<.001, and r = -0.56, p <.01, respectively). Cell size, waist-to-hip ration (WHR), and BMI correlated negatively with insulin's effect to stimulate glucose uptake both in vitro (r = -0.55, P <.01, r = -0.54, P <.01, and r = -0.43, P <.05, respectively) and in vivo (r = -0.43, P <.05, r = -0.50, P <.01, and r = -0.36, P <.05, respectively). Multiple regression analyses revealed that adipocyte cell size and WHR independently predicted insulin resistance in vitro. Furthermore, insulin sensitivity in vivo could be predicted by fasting blood glucose and serum insulin levels. We conclude that insulin resistance in fat cells from type 2 diabetes patients is fully reversible following incubation at physiological glucose concentrations. Thus, cellular insulin resistance may be mainly secondary to the hyperglycemic state in vivo.
  •  
2.
  •  
3.
  • Ruge, Toralph, et al. (författare)
  • Acute hyperinsulinemia raises plasma interleukin-6 in both nondiabetic and type 2 diabetes mellitus subjects, and this effect is inversely associated with body mass index
  • 2009
  • Ingår i: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 58:6, s. 860-866
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyperinsulinemia is a characteristic of type 2 diabetes mellitus (T2DM) and is believed to play a role in the low-grade inflammation seen in T2DM. The main aim was to study the effect of hyperinsulinemia on adipokines in individuals with different levels of insulin resistance, glycemia, and obesity. Three groups of sex-matched subjects were studied: young healthy subjects (YS; n = 10; mean age, 26 years; body mass index [BMI], 22 kg/m2), patients with T2DM (DS; n = 10; 61 years; BMI, 27 kg/m2), and age- and BMI-matched controls to DS (CS; n = 10; 60 years; BMI, 27 kg/m2). Plasma concentrations of adipokines were measured during a hyperinsulinemic euglycemic clamp lasting 4 hours. Moreover, insulin-stimulated glucose uptake in isolated adipocytes was analyzed to address adipose tissue insulin sensitivity. Plasma interleukin (IL)-6 increased significantly (P ≤ .01) in all 3 groups during hyperinsulinemia. However, the increase was smaller in both DS (P = .06) and CS (P < .05) compared with YS (∼2.5-fold vs ∼4-fold). A significant increase of plasma tumor necrosis factor (TNF) α was observed only in YS. There were only minor or inconsistent effects on adiponectin, leptin, and high-sensitivity C-reactive protein levels during hyperinsulinemia. Insulin-induced rise in IL-6 correlated negatively to BMI (P = .001), waist to hip ratio (P = .05), and baseline (fasting) insulin (P = .03) and IL-6 (P = .02) levels and positively to insulin-stimulated glucose uptake in isolated adipocytes (P = .07). There was no association with age or insulin sensitivity. In a multivariate analysis, also including T2DM/no T2DM, an independent correlation (inverse) was found only between BMI and fold change of IL-6 (r2 = 0.41 for model, P < .005). Hyperinsulinemia per se can produce an increase in plasma IL-6 and TNFα, and this can potentially contribute to the low-grade inflammation seen in obesity and T2DM. However, obesity seems to attenuate the ability of an acute increase in insulin to further raise circulating levels of IL-6 and possibly TNFα.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy