SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1532 8600 ;pers:(Svensson Per Arne 1969)"

Sökning: L773:1532 8600 > Svensson Per Arne 1969

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fryk, Emanuel, et al. (författare)
  • Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients
  • 2016
  • Ingår i: Metabolism-Clinical and Experimental. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 65:7, s. 998-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men. Methods. Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16 weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4 weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue. Results. Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p < 0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p < 0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p < 0.05) and increased by overfeeding (p < 0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p < 0.05) but this was independent of the insulin signal. Conclusion. Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes. (C) 2016 Elsevier Inc. All rights reserved.
  •  
2.
  • Magnusson, Björn, 1976, et al. (författare)
  • Cell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism.
  • 2008
  • Ingår i: Metabolism: clinical and experimental. - : Elsevier BV. - 1532-8600. ; 57:9, s. 1307-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Members of the cell death-inducing DFF45-like effector (CIDE) gene family have been shown to regulate lipid metabolism. In this article, we report that the third member of the human CIDE family, CIDEC, is down-regulated in response to a reduced caloric intake. The down-regulation was demonstrated by microarray and real-time polymerase chain reaction analysis of subcutaneous adipose tissue in 2 independent studies on obese patients undergoing treatment with a very low calorie diet. By analysis of CIDEC expression in 65 human tissues, we conclude that human CIDEC is predominantly expressed in subcutaneous adipocytes. Together, these observations led us to investigate the effect of decreased CIDEC expression in cultured 3T3-L1 adipocytes. Small interfering RNA-mediated knockdown of CIDEC resulted in an increased basal release of nonesterified fatty acids, decreased responsiveness to adrenergic stimulation of lipolysis, and increased oxidation of endogenous fatty acids. Thus, we suggest that CIDEC is a regulator of adipocyte lipid metabolism and may be important for the adipocyte to adapt to changes in energy availability.
  •  
3.
  • Pereira, Maria J, 1981-, et al. (författare)
  • FKBP5 expression in human adipose tissue increases following dexamethasone exposure and is associated with insulin resistance
  • 2014
  • Ingår i: Metabolism: Clinical and Experimental. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 63:9, s. 1198-1208
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective To study effects of dexamethasone on gene expression in human adipose tissue aiming to identify potential novel mechanisms for glucocorticoid-induced insulin resistance. Materials/methods Subcutaneous and omental adipose tissue, obtained from non-diabetic donors (10 M/15 F; age: 28-60 years; BMI: 20.7-30.6 kg/m2), was incubated with or without dexamethasone (0.003-3 μmol/L) for 24 h. Gene expression was assessed by microarray and real time-PCR and protein expression by immunoblotting. Results FKBP5 (FK506-binding protein 5) and CNR1 (cannabinoid receptor 1) were the most responsive genes to dexamethasone in both subcutaneous and omental adipose tissue (~ 7-fold). Dexamethasone increased FKBP5 gene and protein expression in a dose-dependent manner in both depots. The gene product, FKBP51 protein, was 10-fold higher in the omental than in the subcutaneous depot, whereas the mRNA levels were similar. Higher FKBP5 gene expression in omental adipose tissue was associated with reduced insulin effects on glucose uptake in both depots. Furthermore, FKBP5 gene expression in subcutaneous adipose tissue was positively correlated with serum insulin, HOMA-IR and subcutaneous adipocyte diameter and negatively with plasma HDL-cholesterol. FKBP5 SNPs were found to be associated with type 2 diabetes and diabetes-related phenotypes in large population-based samples. Conclusions Dexamethasone exposure promotes expression of FKBP5 in adipose tissue, a gene that may be implicated in glucocorticoid-induced insulin resistance. © 2014 Elsevier Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy