SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1535 9484 ;lar1:(cth)"

Sökning: L773:1535 9484 > Chalmers tekniska högskola

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boulund, Fredrik, 1985, et al. (författare)
  • Typing and Characterization of Bacteria Using Bottom-up Tandem Mass Spectrometry Proteomics
  • 2017
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 16:6, s. 1052-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • Methods for rapid and reliable microbial identification are essential in modern healthcare. The ability to detect and correctly identify pathogenic species and their resistance phenotype is necessary for accurate diagnosis and efficient treatment of infectious diseases. Bottom-up tandem mass spectrometry (MS) proteomics enables rapid characterization of large parts of the expressed genes of microorganisms. However, the generated data are highly fragmented, making downstream analyses complex. Here we present TCUP, a new computational method for typing and characterizing bacteria using proteomics data from bottom-up tandem MS. TCUP compares the generated protein sequence data to reference databases and automatically finds peptides suitable for characterization of taxonomic composition and identification of expressed antimicrobial resistance genes. TCUP was evaluated using several clinically relevant bacterial species (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae), using both simulated data generated by in silico peptide digestion and experimental proteomics data generated by liquid chromatography-tandem mass spectrometry (MS/MS). The results showed that TCUP performs correct peptide classifications at rates between 90.3 and 98.5% at the species level. The method was also able to estimate the relative abundances of individual species in mixed cultures. Furthermore, TCUP could identify expressed beta-lactamases in an extended spectrum beta-lactamase-producing (ESBL) E.coli strain, even when the strain was cultivated in the absence of antibiotics. Finally, TCUP is computationally efficient, easy to integrate in existing bioinformatics workflows, and freely available under an open source license for both Windows and Linux environments.
  •  
2.
  • Hanrieder, Jörg, 1980, et al. (författare)
  • L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry.
  • 2011
  • Ingår i: Molecular & cellular proteomics : MCP. - 1535-9484 .- 1535-9476. ; 10:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Opioid peptides are involved in various pathophysiological processes, including algesia, epilepsy, and drug dependence. A strong association between L-DOPA-induced dyskinesia (LID) and elevated prodynorphin mRNA levels has been established in both patients and in animal models of Parkinson's disease, but to date the endogenous prodynorphin peptide products have not been determined. Here, matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) was used for characterization, localization, and relative quantification of striatal neuropeptides in a rat model of LID in Parkinson's disease. MALDI IMS has the unique advantage of high sensitivity and high molecular specificity, allowing comprehensive detection of multiple molecular species in a single tissue section. Indeed, several dynorphins and enkephalins could be detected in the present study, including dynorphin A(1-8), dynorphin B, α-neoendorphin, MetEnkRF, MetEnkRGL, PEnk (198-209, 219-229). IMS analysis revealed elevated levels of dynorphin B, α-neoendorphin, substance P, and PEnk (220-229) in the dorsolateral striatum of high-dyskinetic animals compared with low-dyskinetic and lesion-only control rats. Furthermore, the peak-intensities of the prodynorphin derived peptides, dynorphin B and α-neoendorphin, were strongly and positively correlated with LID severity. Interestingly, these LID associated dynorphin peptides are not those with high affinity to κ opioid receptors, but are known to bind and activate also μ- and Δ-opioid receptors. In addition, the peak intensities of a novel endogenous metabolite of α-neoendorphin lacking the N-terminal tyrosine correlated positively with dyskinesia severity. MALDI IMS of striatal sections from Pdyn knockout mice verified the identity of fully processed dynorphin peptides and the presence of endogenous des-tyrosine α-neoendorphin. Des-tyrosine dynorphins display reduced opioid receptor binding and this points to possible novel nonopioid receptor mediated changes in the striatum of dyskinetic rats. Because des-tyrosine dynorphins can only be detected by mass spectrometry, as no antibodies are available, these findings highlight the importance of MALDI IMS analysis for the study of molecular dynamics in neurological diseases.
  •  
3.
  • Karlsson, Roger, 1975, et al. (författare)
  • Discovery of Species-unique Peptide Biomarkers of Bacterial Pathogens by Tandem Mass Spectrometry-based Proteotyping
  • 2020
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 19:3, s. 518-528
  • Tidskriftsartikel (refereegranskat)abstract
    • Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.
  •  
4.
  • Ravikumar, V., et al. (författare)
  • Quantitative Phosphoproteome Analysis of Bacillus subtilis Reveals Novel Substrates of the Kinase PrkC and Phosphatase PrpC
  • 2014
  • Ingår i: Molecular and Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 13:8, s. 1965-1978
  • Tidskriftsartikel (refereegranskat)abstract
    • Reversible protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) residues plays a critical role in regulation of vital processes in the cell. Despite of considerable progress in our understanding of the role of this modification in bacterial physiology, the dynamics of protein phosphorylation during bacterial growth has rarely been systematically addressed. In addition, little is known about in vivo substrates of bacterial Ser/Thr/Tyr kinases and phosphatases. An excellent candidate to study these questions is the Gram-positive bacterium Bacillus subtilis, one of the most intensively investigated bacterial model organism with both research and industrial applications. Here we employed gel-free phosphoproteomics combined with SILAC labeling and high resolution mass spectrometry to study the proteome and phosphoproteome dynamics during the batch growth of B. subtilis. We measured the dynamics of 1666 proteins and 64 phosphorylation sites in five distinct phases of growth. Enzymes of the central carbon metabolism and components of the translation machinery appear to be highly phosphorylated in the stationary phase, coinciding with stronger expression of Ser/Thr kinases. We further used the SILAC workflow to identify novel putative substrates of the Ser/Thr kinase PrkC and the phosphatase PrpC during stationary phase. The overall number of putative substrates was low, pointing to a high kinase and phosphatase specificity. One of the phosphorylation sites affected by both, PrkC and PrpC, was the Ser281 on the oxidoreductase YkwC. We showed that PrkC phosphorylates and PrpC dephosphorylates YkwC in vitro and that phosphorylation at Ser281 abolishes the oxidoreductase activity of YkwC in vitro and in vivo. Our results present the most detailed phosphoproteomic analysis of B. subtilis growth to date and provide the first global in vivo screen of PrkC and PrpC substrates.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy