SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1540 9538 ;pers:(Bryder David)"

Sökning: L773:1540 9538 > Bryder David

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhattacharya, Deepta, et al. (författare)
  • Niche recycling through division-independent egress of hematopoietic stem cells
  • 2009
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 114:22, s. 37-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Hematopoietic stem cells (HSCs) are thought to reside in discrete niches through stable adhesion, yet previous studies have suggested that host HSCs can be replaced by transplanted donor HSCs, even in the absence of cytoreductive conditioning. To explain this apparent paradox, we calculated, through cell surface phenotyping and transplantation of unfractionated blood, that similar to 1-5% of the total pool of HSCs enters into the circulation each day. Bromodeoxyuridine (BrdU) feeding experiments demonstrated that HSCs in the peripheral blood incorporate BrdU at the same rate as do HSCs in the bone marrow, suggesting that egress from the bone marrow to the blood can occur without cell division and can leave behind vacant HSC niches. Consistent with this, repetitive daily transplantations of small numbers of HSCs administered as new niches became available over the course of 7 d led to significantly higher levels of engraftment than did large, single-bolus transplantations of the same total number of HSCs. These data provide insight as to how HSC replacement can occur despite the residence of endogenous HSCs in niches, and suggest therapeutic interventions that capitalize upon physiological HSC egress.
  •  
2.
  • Bhattacharya, Deepta, et al. (författare)
  • Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning
  • 2006
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 203:1, s. 73-85
  • Tidskriftsartikel (refereegranskat)abstract
    • In the absence of irradiation or other cytoreductive conditioning, endogenous hematopoietic stem cells (HSCs) are thought to fill the unique niches within the bone marrow that allow maintenance of full hematopoietic potential and thus prevent productive engraftment of transplanted donor HSCs. By transplantation of purified exogenous HSCs into unconditioned congenic histocompatible strains of mice, we show that approximately 0.1-1.0% of these HSC niches are available for engraftment at any given point and find no evidence that endogenous HSCs can be displaced from the niches they occupy. We demonstrate that productive engraftment of HSCs within these empty niches is inhibited by host CD4+ T cells that recognize very subtle minor histocompatibility differences. Strikingly, transplantation of purified HSCs into a panel of severe combined immunodeficient (SCID) mice leads to a rapid and complete rescue of lymphoid deficiencies through engraftment of these very rare niches and expansion of donor lymphoid progenitors. We further demonstrate that transient antibody-mediated depletion of CD4+ T cells allows short-term HSC engraftment and regeneration of B cells in a mouse model of B(-) non-SCID. These experiments provide a general mechanism by which transplanted HSCs can correct hematopoietic deficiencies without any host conditioning or with only highly specific and transient lymphoablation.
  •  
3.
  • Bryder, David, et al. (författare)
  • Self-renewal of multipotent long-term repopulating hematopoietic stem cells is negatively regulated by Fas and tumor necrosis factor receptor activation
  • 2001
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 194:7, s. 941-952
  • Tidskriftsartikel (refereegranskat)abstract
    • Multipotent self-renewing hematopoietic stem cells (HSCs) are responsible for reconstitution of all blood cell lineages. Whereas growth stimulatory cytokines have been demonstrated to promote HSC self-renewal, the potential role of negative regulators remains elusive. Receptors for tumor necrosis factor (TNF) and Fas ligand have been implicated as regulators of steady-state hematopoiesis, and if overexpressed mediate bone marrow failure. However, it has been proposed that hematopoietic progenitors rather than stem cells might be targeted by Fas activation. Here, murine Lin(-)Sca1(+)c-kit(+) stem cells revealed little or no constitutive expression of Fas and failed to respond to an agonistic anti-Fas antibody. However, if induced to undergo self-renewal in the presence of TNF-alpha, the entire short and long-term repopulating HSC pool acquired Fas expression at high levels and concomitant activation of Fas suppressed in vitro growth of Lin(-)Sca1(+)c-kit(+) cells cultured at the single cell level. Moreover, Lin(-)Sca1(+)c-kit(+) stem cells undergoing self-renewal divisions in vitro were severely and irreversibly compromised in their short- and long-term multilineage reconstituting ability if activated by TNF-alpha or through Fas, providing the first evidence for negative regulators of HSC self-renewal.
  •  
4.
  • Jensen, Christina T, et al. (författare)
  • Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis
  • 2018
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 215:7, s. 1947-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.
  •  
5.
  • Morcos, M. N. F., et al. (författare)
  • Continuous mitotic activity of primitive hematopoietic stem cells in adult mice
  • 2020
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 217:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The proliferative activity of aging hematopoietic stem cells (HSCs) is controversially discussed. Inducible fluorescent histone 2B fusion protein (H2B-FP) transgenic mice are important tools for tracking the mitotic history of murine HSCs in label dilution experiments. A recent study proposed that primitive HSCs symmetrically divide only four times to then enter permanent quiescence. We observed that background fluorescence due to leaky H2B-FP expression, occurring in all H2B-FP transgenes independent of label induction, accumulated with age in HSCs with high repopulation potential. We argue that this background had been misinterpreted as stable retention of induced label. We found cell division-independent half-lives of H2B-FPs to be short, which had led to overestimation of HSC divisional activity. Our data do not support abrupt entry of HSCs into permanent quiescence or sudden loss of regeneration potential after four divisions, but show that primitive HSCs of adult mice continue to cycle rarely.
  •  
6.
  • Porse, BT, et al. (författare)
  • Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage
  • 2005
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 202:1, s. 85-96
  • Tidskriftsartikel (refereegranskat)abstract
    • CCAAT/enhancer binding protein (C/EBP)alpha is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow ( BM) myeloid progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation, accumulation of myeloblasts and promyelocytes, and expansion of myeloid progenitor populations - all characteristics of AML. Circulating myeloblasts and hepatic leukocyte infiltration were observed, but thrombocytopenia, anemia, and elevated leukocyte count - normally associated with AML - were absent. These results show that disrupting the cell cycle regulatory function of C/EBP alpha is sufficient to initiate AML-like transformation of the granulocytic lineage, but only partially the peripheral pathology of AML.
  •  
7.
  • Pronk, Kees-Jan, et al. (författare)
  • Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors.
  • 2011
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 208:8, s. 1563-1570
  • Tidskriftsartikel (refereegranskat)abstract
    • Whereas maintenance of hematopoietic stem cells (HSCs) is a requisite for life, uncontrolled expansion of HSCs might enhance the propensity for leukemic transformation. Accordingly, HSC numbers are tightly regulated. The identification of physical cellular HSC niches has underscored the importance of extrinsic regulators of HSC homeostasis. However, whereas extrinsic positive regulators of HSCs have been identified, opposing extrinsic repressors of HSC expansion in vivo have yet to be described. Like many other acute and chronic inflammatory diseases, bone marrow (BM) failure syndromes are associated with tumor necrosis factor-α (TNF) overexpression. However, the in vivo relevance of TNF in the regulation of HSCs has remained unclear. Of considerable relevance for normal hematopoiesis and in particular BM failure syndromes, we herein demonstrate that TNF is a cell-extrinsic and potent endogenous suppressor of normal HSC activity in vivo in mice. These effects of TNF involve two distinct TNF receptors.
  •  
8.
  • Serafini, Marta, et al. (författare)
  • Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells
  • 2007
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 204:1, s. 129-139
  • Tidskriftsartikel (refereegranskat)abstract
    • For decades, in vitro expansion of transplantable hematopoietic stem cells (HSCs) has been an elusive goal. Here, we demonstrate that multipotent adult progenitor cells (MAPCs), isolated from green fluorescent protein (GFP)-transgenic mice and expanded in vitro for >40-80 population doublings, are capable of multilineage hematopoietic engraftment of immunodeficient mice. Among MAPC-derived GFP+CD45.2+ cells in the bone marrow of engrafted mice, HSCs were present that could radioprotect and reconstitute multilineage hematopoiesis in secondary and tertiary recipients, as well as myeloid and lymphoid hematopoietic progenitor subsets and functional GFP+ MAPC-derived lymphocytes that were functional. Although hematopoietic contribution by MAPCs was comparable to control KTLS HSCs, approximately 10(3)-fold more MAPCs were required for efficient engraftment. Because GFP+ host-derived CD45.1+ cells were not observed, fusion is not likely to account for the generation of HSCs by MAPCs.
  •  
9.
  • Sitnicka Quinn, Ewa, et al. (författare)
  • Complementary Signaling through flt3 and Interleukin-7 Receptor {alpha} Is Indispensable for Fetal and Adult B Cell Genesis.
  • 2003
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 198:10, s. 1495-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive studies of mice deficient in one or several cytokine receptors have failed to support an indispensable role of cytokines in development of multiple blood cell lineages. Whereas B1 B cells and Igs are sustained at normal levels throughout life of mice deficient in IL-7, IL-7R{alpha}, common cytokine receptor gamma chain, or flt3 ligand (FL), we report here that adult mice double deficient in IL-7R{alpha} and FL completely lack visible LNs, conventional IgM+ B cells, IgA+ plasma cells, and B1 cells, and consequently produce no Igs. All stages of committed B cell progenitors are undetectable in FL-/- x IL-7R{alpha}-/- BM that also lacks expression of the B cell commitment factor Pax5 and its direct target genes. Furthermore, in contrast to IL-7R{alpha}-/- mice, FL-/- x IL-7R{alpha}-/- mice also lack mature B cells and detectable committed B cell progenitors during fetal development. Thus, signaling through the cytokine tyrosine kinase receptor flt3 and IL-7R{alpha} are indispensable for fetal and adult B cell development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy