SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1549 4918 ;pers:(Lindvall Olle)"

Sökning: L773:1549 4918 > Lindvall Olle

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cusulin, Carlo, et al. (författare)
  • Embryonic Stem Cell-Derived Neural Stem Cells Fuse with Microglia and Mature Neurons.
  • 2012
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099.
  • Tidskriftsartikel (refereegranskat)abstract
    • Transplantation of neural stem cells (NSCs) is a novel strategy to restore function in the diseased brain, acting through multiple mechanisms, e.g., neuronal replacement, neuroprotection and modulation of inflammation. Whether transplanted NSCs can operate by fusing with microglial cells or mature neurons is largely unknown. Here we have studied the interaction of a mouse embryonic stem cell-derived neural stem (NS) cell line with rat and mouse microglia and neurons in vitro and in vivo. We show that NS cells spontaneously fuse with co-cultured cortical neurons, and that this process requires the presence of microglia. Our in vitro data indicate that the NS cells can first fuse with microglia, and then with neurons. The fused NS/microglial cells express markers and retain genetic and functional characteristics of both parental cell types, being able to respond to microglia-specific stimuli (LPS and IL-4/IL-13) and to differentiate to neurons and astrocytes. The NS cells fuse with microglia, at least partly, through interaction between phosphatidylserine (PS) exposed on the surface of NS cells and CD36 receptor on microglia. Transplantation of NS cells into rodent cortex results in fusion with mature pyramidal neurons, which often carry two nuclei, a process probably mediated by microglia. The fusogenic role of microglia could be even more important after NSC transplantation into brains affected by neurodegenerative diseases associated with microglia activation. It remains to be elucidated how the occurrence of the fused cells will influence the functional outcome after NSC transplantation in the diseased brain.
  •  
2.
  • Oki, Koichi, et al. (författare)
  • Human Induced Pluripotent Stem Cells form Functional Neurons and Improve Recovery After Grafting in Stroke-Damaged Brain.
  • 2012
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 30:6, s. 1120-1133
  • Tidskriftsartikel (refereegranskat)abstract
    • Reprogramming of adult human somatic cells to induced pluripotent stem cells (iPSCs) is a novel approach to produce patient-specific cells for autologous transplantation. Whether such cells survive long-term, differentiate to functional neurons, and induce recovery in the stroke-injured brain is unclear. We have transplanted long-term self-renewing neuroepithelial-like stem (lt-NES) cells, generated from adult human fibroblast-derived iPSCs, into the stroke-damaged mouse and rat striatum or cortex. Recovery of forepaw movements was observed already at 1 week after transplantation. Improvement was most likely not due to neuronal replacement but was associated with increased vascular endothelial growth factor levels, probably enhancing endogenous plasticity. Transplanted cells stopped proliferating, could survive without forming tumors for at least 4 months, and differentiated to morphologically mature neurons of different subtypes. Neurons in intrastriatal grafts sent axonal projections to the globus pallidus. Grafted cells exhibited electrophysiological properties of mature neurons and received synaptic input from host neurons. Our study provides the first evidence that transplantation of human iPSC-derived cells is a safe and efficient approach to promote recovery after stroke and can be used to supply the injured brain with new neurons for replacement.
  •  
3.
  • Thored, Per, et al. (författare)
  • Persistent production of neurons from adult brain stem cells during recovery after stroke.
  • 2006
  • Ingår i: Stem Cells. - : Oxford University Press (OUP). - 1549-4918 .- 1066-5099. ; 24:3, s. 739-747
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural stem cells in the subventricular zone of adult rodents produce new striatal neurons that may replace those that have died after stroke; however, the neurogenic response has been considered acute and transient, yielding only small numbers of neurons. In contrast, we show herein that striatal neuroblasts are generated without decline at least for 4 months after stroke in adult rats. Neuroblasts formed early or late after stroke either differentiate into mature neurons, which survive for several months, or die through caspase-mediated apoptosis. The directed migration of the new neurons toward the ischemic damage is regulated by stromal cell-derived factor-la and its receptor CXCR4. These results show that endogenous neural stem cells continuously supply the injured adult brain with new neurons, which suggests novel self-repair strategies to improve recovery after stroke.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy