SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1552 5279 OR L773:1552 5260 ;lar1:(lu);pers:(Ewers Michael)"

Sökning: L773:1552 5279 OR L773:1552 5260 > Lunds universitet > Ewers Michael

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Binette, Alexa Pichet, et al. (författare)
  • Amyloid-associated increases in soluble tau is a key driver in accumulation of tau aggregates and cognitive decline in early Alzheimer
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For optimal design of anti-amyloid-β (Aβ) and anti-tau clinical trials, it is important to understand how Aβ and soluble phosphorylated tau (p-tau) relate to the accumulation of tau aggregates assessed with positron emission tomography (PET) and subsequent cognitive decline across the Alzheimer's disease (AD) continuum. Method: We included 327 participants from the Swedish BioFINDER-2 cohort with cerebrospinal fluid (CSF) p-tau217, Aβ-PET, longitudinal tau-PET, and longitudinal cognition. The main groups of interest were Aβ-positive non-demented participants and AD dementia patients (Table 1 and Figure 1), and analyses were conducted separately in each group. First, we investigated how soluble p-tau217 and regional Aβ-PET were associated with tau-PET rate of change across the 200 brain parcels from the Schaefer atlas. We also tested the mediating effect of p-tau217 between Aβ-PET and tau-PET change. Second, we investigated how soluble p-tau217 and tau-PET change related to change in cognition, and mediation between these variables. Result: In early AD stages (non-demented participants), increased concentration of soluble p-tau217 was the main driver of accumulation of insoluble tau aggregates across the brain (measured as tau-PET rate of change), beyond the effect of regional Aβ-PET and baseline tau-PET (Figure 2A-C). Further, averaged across all regions, soluble p-tau217 mediated 54% of the association between Aβ and tau aggregation (Figure 2D). Higher soluble p-tau217 concentrations were also associated with cognitive decline, which was mediated by faster increase of tau aggregates (Figure 3). Repeating the same analyses in the AD dementia group, results were different. In late stage of AD, when Aβ fibrils and soluble p-tau levels have plateaued, soluble p-tau217 was not associated with accumulation of tau aggregates beyond baseline tau-PET (Figure 4A), and cognitive decline was driven by the accumulation rate of insoluble tau aggregates and not soluble p-tau217 (Figure 4B-C). Conclusion: Soluble p-tau is a main driver of tau aggregation and future cognitive decline in earlier stages of AD, whereas tau aggregation accumulation is more likely an important driver of disease in later stages. Overall, our data suggest that therapeutic approaches reducing soluble p-tau levels might be most favorable in early AD.
  •  
2.
  • Dichgans, Martin, et al. (författare)
  • METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration : An initiative of the Joint Programme for Neurodegenerative Disease Research
  • 2016
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 12:12, s. 1235-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • Dementia is a global problem and major target for health care providers. Although up to 45% of cases are primarily or partly due to cerebrovascular disease, little is known of these mechanisms or treatments because most dementia research still focuses on pure Alzheimer's disease. An improved understanding of the vascular contributions to neurodegeneration and dementia, particularly by small vessel disease, is hampered by imprecise data, including the incidence and prevalence of symptomatic and clinically “silent” cerebrovascular disease, long-term outcomes (cognitive, stroke, or functional), and risk factors. New large collaborative studies with long follow-up are expensive and time consuming, yet substantial data to advance the field are available. In an initiative funded by the Joint Programme for Neurodegenerative Disease Research, 55 international experts surveyed and assessed available data, starting with European cohorts, to promote data sharing to advance understanding of how vascular disease affects brain structure and function, optimize methods for cerebrovascular disease in neurodegeneration research, and focus future research on gaps in knowledge. Here, we summarize the results and recommendations from this initiative. We identified data from over 90 studies, including over 660,000 participants, many being additional to neurodegeneration data initiatives. The enthusiastic response means that cohorts from North America, Australasia, and the Asia Pacific Region are included, creating a truly global, collaborative, data sharing platform, linked to major national dementia initiatives. Furthermore, the revised World Health Organization International Classification of Diseases version 11 should facilitate recognition of vascular-related brain damage by creating one category for all cerebrovascular disease presentations and thus accelerate identification of targets for dementia prevention.
  •  
3.
  •  
4.
  • Franzmeier, Nicolai, et al. (författare)
  • Earlier Alzheimer's disease onset is associated with a shift of tau pathology towards brain hubs which facilitates tau spreading
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In Alzheimer’s disease (AD), younger symptom onset is associated accelerated cognitive decline and tau spreading, yet the drivers of faster disease manifestation in patients with earlier symptom onset are unknown. Earlier symptom onset is associated with stronger tau pathology in fronto-parietal regions which typically harbor globally connected hubs that are central for cognition. Since tau spreads across connected regions, globally connected hubs may accelerate tau spreading due to their large number of connections to other brain regions. Thus, we hypothesized that a pattern shift of tau pathology towards globally connected brain hubs may facilitate tau spreading and earlier symptom manifestation in AD. Method: We included two independent samples with longitudinal Flortaucipir tau-PET covering the AD spectrum (ADNI: n(controls/AD-preclinical/AD-symptomatic)=93/60/89, BioFINDER, n(controls/AD-preclinical/AD-symptomatic)=16/16/25). In addition, we included resting-state fMRI from human connectome project participants (n=1000), applying a 200-ROI brain atlas to obtain a global connectivity map for assessing brain hubs (Fig.1A-D). Applying the same atlas to tau-PET we transformed SUVRs to tau positivities using a pre-established gaussian-mixture modeling approach (Fig.1E-F). By mapping tau-PET positivities to the fMRI-derived global connectivity map (Fig.1G-L), we assessed the degree to which subject specific tau-PET patterns were shifted towards globally connected hubs or non-hubs, while adjusting for global tau levels. Using linear regression, we then tested whether a stronger shift of tau towards hubs was associated with earlier symptom manifestation and faster longitudinal tau accumulation. Result: In symptomatic AD patients, younger age was associated with a stronger shift of tau-PET towards globally connected brain hubs (p[ADNI/BiOFINDER]=0.024/0.018, Fig.2A&B), and with higher global connectivity of epicenters with highest tau pathology (p[ADNI/BiOFINDER]<0.001/0.001, Fig.2C&D). In symptomatic AD, younger age (p[ADNI/BiOFINDER]=0.009/0.001) and a stronger shift of tau-PET towards hubs predicted faster subsequent tau accumulation (p[ADNI/BiOFINDER]=0.004/0.002), supporting the view that that hubs facilitate tau spreading (Fig.3). Further, a stronger shift of tau-PET towards globally connected brain hubs mediated the association between younger age and faster tau accumulation in symptomatic AD patients (p[ADNI/BiOFINDER]=0.039/0.046). Conclusion: Younger AD symptom onset is associated with stronger tau pathology in globally connected brain hubs, which facilitates faster tau spreading.
  •  
5.
  • Franzmeier, Nicolai, et al. (författare)
  • The BIN1 rs744373 Alzheimer's disease risk SNP is associated with faster Aβ-associated tau accumulation and cognitive decline
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:1, s. 103-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The BIN1 rs744373 single nucleotide polymorphism (SNP) is a key genetic risk locus for Alzheimer's disease (AD) associated with tau pathology. Because tau typically accumulates in response to amyloid beta (Aβ), we tested whether BIN1 rs744373 accelerates Aβ-related tau accumulation. Methods: We included two samples (Alzheimer's Disease Neuroimaging Initiative [ADNI], n = 153; Biomarkers for Identifying Neurodegenerative Disorders Early and Reliably [BioFINDER], n = 63) with longitudinal 18F-Flortaucipir positron emission tomography (PET), Aβ biomarkers, and longitudinal cognitive assessments. We assessed whether BIN1 rs744373 was associated with faster tau-PET accumulation at a given level of Aβ and whether faster BIN1 rs744373-associated tau-PET accumulation mediated cognitive decline. Results: BIN1 rs744373 risk-allele carriers showed faster global tau-PET accumulation (ADNI/BioFINDER, P <.001/P <.001). We found significant Aβ by rs744373 interactions on global tau-PET change (ADNI: β/standard error [SE] = 0.42/0.14, P = 0.002; BioFINDER: β/SE = –0.35/0.15, P =.021), BIN1 risk-allele carriers showed accelerated tau-PET accumulation at higher Aβ levels. In ADNI, rs744373 effects on cognitive decline were mediated by faster global tau-PET accumulation (β/SE = 0.20/0.07, P =.005). Discussion: BIN1-associated AD risk is potentially driven by accelerated tau accumulation in the face of Aβ.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy