SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1552 5279 OR L773:1552 5260 ;lar1:(lu);pers:(van Westen Danielle)"

Sökning: L773:1552 5279 OR L773:1552 5260 > Lunds universitet > Van Westen Danielle

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hansson, Oskar, et al. (författare)
  • Cerebral hypoperfusion is not associated with an increase in amyloid β pathology in middle-aged or elderly people
  • 2018
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5279 .- 1552-5260. ; 14:1, s. 54-61
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: It is hypothesized that cerebral hypoperfusion promotes the development of Alzheimer pathology. We therefore studied whether longstanding cerebral hypoperfusion is associated with Alzheimer pathology in nondemented humans.METHODS: Cerebral blood flow and amyloid β ((18)F-Flutemetamol) positron emission tomography retention were assessed in eleven patients with unilateral occlusion of precerebral arteries resulting in chronic and uneven hypoperfusion. A subset of patients underwent tau ((18)F-AV-1451) positron emission tomography.RESULTS: The blood flow was significantly reduced on the affected side of the brain in patients with unilateral occlusion of the internal carotid artery or stenosis of the middle cerebral artery. However, the cortical uptake of (18)F-Flutemetamol or (18)F-AV-1451 was not altered.DISCUSSION: Our results suggest that longstanding cerebral hypoperfusion in humans does not result in accumulation of amyloid β fibrils or tau aggregates.
  •  
2.
  • Ossenkoppele, Rik, et al. (författare)
  • Distinct tau PET patterns in atrophy-defined subtypes of Alzheimer's disease
  • 2020
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:2, s. 335-344
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Differential patterns of brain atrophy on structural magnetic resonance imaging (MRI) revealed four reproducible subtypes of Alzheimer's disease (AD): (1) “typical”, (2) “limbic-predominant”, (3) “hippocampal-sparing”, and (4) “mild atrophy”. We examined the neurobiological characteristics and clinical progression of these atrophy-defined subtypes. Methods: The four subtypes were replicated using a clustering method on MRI data in 260 amyloid-β–positive patients with mild cognitive impairment or AD dementia, and we subsequently tested whether the subtypes differed on [18F]flortaucipir (tau) positron emission tomography, white matter hyperintensity burden, and rate of global cognitive decline. Results: Voxel-wise and region-of-interest analyses revealed the greatest neocortical tau load in hippocampal-sparing (frontoparietal-predominant) and typical (temporal-predominant) patients, while limbic-predominant patients showed particularly high entorhinal tau. Typical patients with AD had the most pronounced white matter hyperintensity load, and hippocampal-sparing patients showed the most rapid global cognitive decline. Discussion: Our data suggest that structural MRI can be used to identify biologically and clinically meaningful subtypes of AD.
  •  
3.
  • Salvadó, Gemma, et al. (författare)
  • The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:7, s. 1383-1395
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. Methods: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). Results: Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. Discussion: In addition to the known resistance against amyloid-β deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline.
  •  
4.
  • Srikrishna, Meera, et al. (författare)
  • CT-based volumetric measures obtained through deep learning: Association with biomarkers of neurodegeneration
  • 2024
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 20:1, s. 629-640
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONCranial computed tomography (CT) is an affordable and widely available imaging modality that is used to assess structural abnormalities, but not to quantify neurodegeneration. Previously we developed a deep-learning-based model that produced accurate and robust cranial CT tissue classification.MATERIALS AND METHODSWe analyzed 917 CT and 744 magnetic resonance (MR) scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from participants of the Memory Clinic Cohort, Singapore. We tested associations between six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and imaging biomarkers, and measures of cognition.RESULTSCTVMs differentiated cognitively healthy individuals from dementia and prodromal dementia patients with high accuracy levels comparable to MR-based measures. CTVMs were significantly associated with measures of cognition and biochemical markers of neurodegeneration.DISCUSSIONThese findings suggest the potential future use of CT-based volumetric measures as an informative first-line examination tool for neurodegenerative disease diagnostics after further validation.HIGHLIGHTSComputed tomography (CT)-based volumetric measures can distinguish between patients with neurodegenerative disease and healthy controls, as well as between patients with prodromal dementia and controls.CT-based volumetric measures associate well with relevant cognitive, biochemical, and neuroimaging markers of neurodegenerative diseases.Model performance, in terms of brain tissue classification, was consistent across two cohorts of diverse nature.Intermodality agreement between our automated CT-based and established magnetic resonance (MR)-based image segmentations was stronger than the agreement between visual CT and MR imaging assessment.
  •  
5.
  • Wuestefeld, Anika, et al. (författare)
  • Age-related tau-PET uptake and its downstream effects extend beyond the medial temporal lobe in cognitively normal older adults
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Amyloid-beta (Aβ) is hypothesized to facilitate the spread of tau pathology beyond the medial temporal lobe (MTL). However, there is evidence that age-related Aβ-independent tau pathology is present outside the MTL (Kaufman et al., Acta Neuropathol, 2018). We examine tau deposition determined by positron emission tomography (PET) in regions typically involved earlier/later in AD and downstream effects on neurodegeneration and cognition in cognitively unimpaired older adults and a low-Aβ subgroup. Methods: We included 488 adults (40-91 years; low-Aβ: n=355, 65.2±11.5 years) from the BioFINDER-2 study. MTL volumes (dentate gyrus, subiculum (SUB), cornu ammonis 1) and thickness (entorhinal cortex, Brodmann areas (BA)35/36, and parahippocampal cortex) were obtained, using Automated Segmentation for Hippocampal Subfields packages for T1- and T2-weighted magnetic resonance images. Thickness of early/late neocortical AD-regions (anterior cingulate, precuneus/posterior cingulate (PPC), orbitofrontal, inferior parietal cortex; and middle frontal, lateral occipital, and precentral/postcentral gyrus) was determined using FreeSurfer. [18F]RO948- and [18F]flutemetamol-PET standardized uptake value ratios (SUVRs) were calculated for local tau and global/local Aβ. Aβ status was determined using Aβ-PET or cerebrospinal fluid Aβ-42/40 ratio. Global cognition was measured using delayed word-list recall, trail making test B, and animal fluency. Results: Increasing age was associated with higher tau-PET SUVRs primarily in MTL/frontal/parietal regions. A significant association between age and local tau-PET remained even when including Aβ-PET as a mediator (Fig. 1). Age and local tau-PET, but not Aβ-PET, where negatively associated with structure in most examined regions (Figs. 2-3). Age-structure associations were serially mediated via tau-PET in regions with early AD pathology (SUB/BA35/PPC). Also, in the low-Aβ subgroup, tau-PET mediated the age-structure (SUB/BA35/PPC) associations (Fig. 3D). Finally, the age-global cognition relationship was serially mediated via MTL tau-PET and subiculum volume, even when including global Aβ-PET as additional mediator (Fig. 4). Conclusion: We observe partially Aβ-independent associations between age and tau-PET signal across the neocortex. Interestingly, partially Aβ-independent tau-PET signal appears to mediate the age-structure associations in and outside the MTL (PPC), also in the low-Aβ group, and the age-MTL structure-cognition associations. This potentially provides in vivo support for Primary Age-related Tauopathy downstream effects on structure, beyond the MTL, and cognition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy