SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1553 7390 ;pers:(Soranzo Nicole)"

Sökning: L773:1553 7390 > Soranzo Nicole

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Coviello, Andrea D, et al. (författare)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p=1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p=1.4×10(-11)), GCKR (rs780093, 2p23.3, p=2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p=3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p=6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p=1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p=8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p=3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p=4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p=1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p=2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p=5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p=2.5×10(-08), women p=0.66, heterogeneity p=0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
2.
  • Hsu, Yi-Hsiang, et al. (författare)
  • An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits
  • 2010
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 6:6, s. e1000977-
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis is a complex disorder and commonly leads to fractures in elderly persons. Genome-wide association studies (GWAS) have become an unbiased approach to identify variations in the genome that potentially affect health. However, the genetic variants identified so far only explain a small proportion of the heritability for complex traits. Due to the modest genetic effect size and inadequate power, true association signals may not be revealed based on a stringent genome-wide significance threshold. Here, we take advantage of SNP and transcript arrays and integrate GWAS and expression signature profiling relevant to the skeletal system in cellular and animal models to prioritize the discovery of novel candidate genes for osteoporosis-related traits, including bone mineral density (BMD) at the lumbar spine (LS) and femoral neck (FN), as well as geometric indices of the hip (femoral neck-shaft angle, NSA; femoral neck length, NL; and narrow-neck width, NW). A two-stage meta-analysis of GWAS from 7,633 Caucasian women and 3,657 men, revealed three novel loci associated with osteoporosis-related traits, including chromosome 1p13.2 (RAP1A, p = 3.6 x 10(-8)), 2q11.2 (TBC1D8), and 18q11.2 (OSBPL1A), and confirmed a previously reported region near TNFRSF11B/OPG gene. We also prioritized 16 suggestive genome-wide significant candidate genes based on their potential involvement in skeletal metabolism. Among them, 3 candidate genes were associated with BMD in women. Notably, 2 out of these 3 genes (GPR177, p = 2.6 x 10(-13); SOX6, p = 6.4 x 10(-10)) associated with BMD in women have been successfully replicated in a large-scale meta-analysis of BMD, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of our prioritization strategy. In the absence of direct biological support for identified genes, we highlighted the efficiency of subsequent functional characterization using publicly available expression profiling relevant to the skeletal system in cellular or whole animal models to prioritize candidate genes for further functional validation.
  •  
3.
  • Nica, Alexandra C, et al. (författare)
  • The architecture of gene regulatory variation across multiple human tissues : the MuTHER study.
  • 2011
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL), skin, and fat. The samples (156 LCL, 160 skin, 166 fat) were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes). In addition, we apply factor analysis (FA) to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes). The unique study design (Matched Co-Twin Analysis--MCTA) permits immediate replication of eQTLs using co-twins (93%-98%) and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20%) have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.
  •  
4.
  • Surakka, Ida, et al. (författare)
  • A Genome-Wide Screen for Interactions Reveals a New Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio on Total Cholesterol
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 7:10, s. e1002333-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain similar to 25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) data from 18 population-based cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts (N = 17,102) for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79 x 10(-9). There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd) difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus.
  •  
5.
  • Takeuchi, Fumihiko, et al. (författare)
  • A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose
  • 2009
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p = 8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.Author SummaryRecently, geneticists have begun assaying hundreds of thousands of genetic markers covering the entire human genome to systematically search for and identify genes that cause disease. We have extended this “genome-wide association study” (GWAS) method by assaying ~326,000 markers in 1,053 Swedish patients in order to identify genes that alter response to the anticoagulant drug warfarin. Warfarin is widely prescribed to reduce blood clotting in order to protect high-risk patients from stroke, thrombosis, and heart attack. But patients vary widely (20-fold) in the warfarin dose needed for proper blood thinning, which means that initial doses in some patients are too high (risking severe bleeding) or too low (risking serious illness). Our GWAS detected two genes (VKORC1, CYP2C9) already known to cause ~40% of the variability in warfarin dose and discovered a new gene (CYP4F2) contributing 1%–2% of the variability. Since our GWAS searched the entire genome, additional genes having a major influence on warfarin dose might not exist or be found in the near-term. Hence, clinical trials assessing patient benefit from individualized dose forecasting based on a patient's genetic makeup at VKORC1, CYP2C9 and possibly CYP4F2 could provide state-of-the-art clinical benchmarks for warfarin use during the foreseeable future.
  •  
6.
  • Zhai, Guangju, et al. (författare)
  • Eight common genetic variants associated with serum DHEAS levels suggest a key role in ageing mechanisms.
  • 2011
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands--yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15 × 10(-36)), SULT2A1 (rs2637125; p = 2.61 × 10(-19)), ARPC1A (rs740160; p = 1.56 × 10(-16)), TRIM4 (rs17277546; p = 4.50 × 10(-11)), BMF (rs7181230; p = 5.44 × 10(-11)), HHEX (rs2497306; p = 4.64 × 10(-9)), BCL2L11 (rs6738028; p = 1.72 × 10(-8)), and CYP2C9 (rs2185570; p = 2.29 × 10(-8)). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy