SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1558 8238 ;hsvcat:3"

Sökning: L773:1558 8238 > Medicin och hälsovetenskap

  • Resultat 1-10 av 79
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Dongqing, et al. (författare)
  • MicroRNA-132 enhances transition from inflammation to proliferation during wound healing.
  • 2015
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 125:8, s. 3008-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Wound healing is a complex process that is characterized by an initial inflammatory phase followed by a proliferative phase. This transition is a critical regulatory point; however, the factors that mediate this process are not fully understood. Here, we evaluated microRNAs (miRs) in skin wound healing and characterized the dynamic change of the miRNome in human skin wounds. miR-132 was highly upregulated during the inflammatory phase of wound repair, predominantly expressed in epidermal keratinocytes, and peaked in the subsequent proliferative phase. TGF-β1 and TGF-β2 induced miR-132 expression in keratinocytes, and transcriptome analysis of these cells revealed that miR-132 regulates a large number of immune response- and cell cycle-related genes. In keratinocytes, miR-132 decreased the production of chemokines and the capability to attract leukocytes by suppressing the NF-κB pathway. Conversely, miR-132 increased activity of the STAT3 and ERK pathways, thereby promoting keratinocyte growth. Silencing of the miR-132 target heparin-binding EGF-like growth factor (HB-EGF) phenocopied miR-132 overexpression in keratinocytes. Using mouse and human ex vivo wound models, we found that miR-132 blockade delayed healing, which was accompanied by severe inflammation and deficient keratinocyte proliferation. Together, our results indicate that miR-132 is a critical regulator of skin wound healing that facilitates the transition from the inflammatory to the proliferative phase.
  •  
2.
  • Albrecht, Inka, et al. (författare)
  • Development of autoantibodies against muscle-specific FHL1 in severe inflammatory myopathies
  • 2015
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 125:12, s. 4612-4624
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations of the gene encoding four-and-a-half LIM domain 1 (FHL1) are the causative factor of several X-linked hereditary myopathies that are collectively termed FHL1-related myopathies. These disorders are characterized by severe muscle dysfunction and damage. Here, we have shown that patients with idiopathic inflammatory myopathies (IIMs) develop autoimmunity to FHL1, which is a muscle-specific protein. Anti-FHL1 autoantibodies were detected in 25% of IIM patients, while patients with other autoimmune diseases or muscular dystrophies were largely anti-FHL1 negative. Anti-FHL1 reactivity was predictive for muscle atrophy, dysphagia, pronounced muscle fiber damage, and vasculitis. FHL1 showed an altered expression pattern, with focal accumulation in the muscle fibers of autoantibody-positive patients compared with a homogeneous expression in anti-FHL1-negative patients and healthy controls. We determined that FHL1 is a target of the cytotoxic protease granzyme B, indicating that the generation of FHL1 fragments may initiate FHL1 autoimmunity. Moreover, immunization of myositis-prone mice with FHL1 aggravated muscle weakness and increased mortality, suggesting a direct link between anti-FHL1 responses and muscle damage. Together, our findings provide evidence that FHL1 may be involved in the pathogenesis not only of genetic FHL1-related myopathies but also of autoimmune IIM. Importantly, these results indicate that anti-FHL1 autoantibodies in peripheral blood have promising potential as a biomarker to identify a subset of severe IIM.
  •  
3.
  • Fritz, Michael, et al. (författare)
  • Prostaglandin-dependent modulation of dopaminergic neurotransmission elicits inflammation-induced aversion in mice
  • 2016
  • Ingår i: Journal of Clinical Investigation. - : AMER SOC CLINICAL INVESTIGATION INC. - 0021-9738 .- 1558-8238. ; 126:2, s. 695-705
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type-specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E-2 (PGE(2)) synthesis. Further, we showed that inflammation-induced PGE(2) targeted EP1 receptors on striatal dopamine D1 receptor-expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE(2)-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation.
  •  
4.
  • Johansson, MEV, et al. (författare)
  • Goblet cells need some stress
  • 2022
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 132:17
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The intestinal tract is protected by epithelium-covering mucus, which is constantly renewed by goblet cells, a specialized type of epithelial cell. Mucus is largely composed of MUC2 mucin, an enormous molecule that poses a high demand on the endoplasmic reticulum (ER) for proper folding and protein assembly, creating a challenge for the secretory machinery in goblet cells. In this issue of the JCI, Grey et al. reveal that the ER resident protein and folding sensor ERN2 (also known as IRE1β) was instrumental for goblet cells to produce sufficient amounts of mucus to form a protective mucus layer. In the absence of ERN2, mucus production was reduced, impairing the mucus barrier, which allowed bacteria to penetrate and cause an epithelial cell stress response. This study emphasizes the importance of a controlled unfolded protein response (UPR) for goblet cell secretion.
  •  
5.
  • Lugano, Roberta, et al. (författare)
  • CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis
  • 2018
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 128:8, s. 3280-3297
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is up-regulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates integrin-β1-signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytical cleavage. The CD93-MMRN2 complex was required for activation of integrin-β1, phosphorylation of focal adhesion kinase (FAK) and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of integrin-β1 and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.
  •  
6.
  • Bacos, Karl, et al. (författare)
  • Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets
  • 2023
  • Ingår i: The Journal of clinical investigation. - 0021-9738 .- 1558-8238. ; 133:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β-cells. To identify candidates contributing to T2D pathophysiology, we studied human pancreatic islets from ~300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified islet expression changes may predispose to diabetes, as they associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β-cells based on single-cell RNA-sequencing data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D-SNPs. Mouse knock-out strains demonstrated that T2D-associated candidates regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β-cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we identified molecular alterations in human pancreatic islets contributing to β-cell dysfunction in T2D pathophysiology.
  •  
7.
  • Baryawno, Ninib, et al. (författare)
  • Detection of human cytomegalovirus in medulloblastomas reveals a potential therapeutic target
  • 2011
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 121:10, s. 4043-4055
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastomas are the most common malignant brain tumors in children. They express high levels of COX-2 and produce PGE(2), which stimulates tumor cell proliferation. Human cytomegalovirus (HCMV) is prevalent in the human population and encodes proteins that provide immune evasion strategies and promote oncogenic transformation and oncomodulation. In particular, HCMV induces COX-2 expression; STAT3 phosphorylation; production of PGE2, vascular endothelial growth factor, and IL-6; and tumor formation in vivo. Here, we show that a large proportion of primary medulloblastomas and medulloblastoma cell lines are infected with HCMV and that COX-2 expression, along with PGE2 levels, in tumors is directly modulated by the virus. Our analysis indicated that both HCMV immediate-early proteins and late proteins are expressed in the majority of primary medulloblastomas. Remarkably, all of the human medulloblastoma cell lines that we analyzed contained HCMV DNA and RNA and expressed HCMV proteins at various levels in vitro. When engrafted into immunocompromised mice, human medulloblastoma cells induced expression of HCMV proteins. HCMV and COX-2 expression correlated in primary tumors, cell lines, and medulloblastoma xenografts. The antiviral drug valganciclovir and the specific COX-2 inhibitor celecoxib prevented HCMV replication in vitro and inhibited PGE2 production and reduced medulloblastoma tumor cell growth both in vitro and in vivo. Ganciclovir did riot affect the growth of HCMV-negative tumor cell lines. These findings imply an important role for HCMV in medulloblastoma and suggest HCMV as a novel therapeutic target for this tumor.
  •  
8.
  • Devarajan, Raman, et al. (författare)
  • Targeting collagen XVIII improves the efficiency of ErbB inhibitors in breast cancer models
  • 2023
  • Ingår i: Journal of Clinical Investigation. - : American Society for Clinical Investigation. - 0021-9738 .- 1558-8238. ; 133:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The tumor extracellular matrix (ECM) critically regulates cancer progression and treatment response. Expression of the basement membrane component collagen XVIII (ColXVIII) is induced in solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII was markedly upregulated in human breast cancer (BC) and was closely associated with a poor prognosis in high-grade BCs. We discovered a role for ColXVIII as a modulator of epidermal growth factor receptor tyrosine kinase (ErbB) signaling and show that it forms a complex with ErbB1 and -2 (also known as EGFR and human epidermal growth factor receptor 2 [HER2]) and α6-integrin to promote cancer cell proliferation in a pathway involving its N-terminal portion and the MAPK/ERK1/2 and PI3K/AKT cascades. Studies using Col18a1 mouse models crossed with the mouse mammary tumor virus-polyoma virus middle T antigen (MMTV-PyMT) mammary carcinogenesis model showed that ColXVIII promoted BC growth and metastasis in a tumor cell-autonomous manner. Moreover, the number of mammary cancer stem cells was significantly reduced in the MMTV-PyMT and human cell models upon ColXVIII inhibition. Finally, ablation of ColXVIII substantially improved the efficacy of ErbB-targeting therapies in both preclinical models. In summary, ColXVIII was found to sustain the stemness properties of BC cells and tumor progression and metastasis through ErbB signaling, suggesting that targeting ColXVIII in the tumor milieu may have important therapeutic potential.
  •  
9.
  • Elkabets, Moshe, et al. (författare)
  • Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice
  • 2011
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 121:2, s. 784-799
  • Tidskriftsartikel (refereegranskat)abstract
    • Systemic instigation is a process by which endocrine signals sent from certain tumors (instigators) stimulate BM cells (BMCs), which are mobilized into the circulation and subsequently foster the growth of otherwise indolent carcinoma cells (responders) residing at distant anatomical sites. The identity of the BMCs and their specific contribution or contributions to responder tumor growth have been elusive. Here, we have demonstrated that Scal(+)cKit(-) hematopoietic BMCs of mouse hosts bearing instigating tumors promote the growth of responding tumors that form with a myofibroblast-rich, desmoplastic stroma. Such stroma is almost always observed in malignant human adenocarcinomas and is an indicator of poor prognosis. We then identified granulin (GRN) as the most upregulated gene in instigating Scal(+)cKit(-) BMCs relative to counterpart control cells. The GRN(+) BMCs that were recruited to the responding tumors induced resident tissue fibroblasts to express genes that promoted malignant tumor progression; indeed, treatment with recombinant GRN alone was sufficient to promote desmoplastic responding tumor growth. Further, analysis of tumor tissues from a cohort of breast cancer patients revealed that high GRN expression correlated with the most aggressive triple-negative, basal-like tumor subtype and reduced patient survival. Our data suggest that GRN and the unique hematopoietic BMCs that produce it might serve as novel therapeutic targets.
  •  
10.
  • Fu, Jianxin, et al. (författare)
  • Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice.
  • 2011
  • Ingår i: The Journal of clinical investigation. - 1558-8238. ; 121:4, s. 1657-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 79
Typ av publikation
tidskriftsartikel (78)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (76)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Mäkinen, Taija (7)
Claesson-Welsh, Lena (4)
Zetterberg, Henrik, ... (4)
Nilsson, Peter (2)
Lind, Lars (2)
Zhang, Yan (1)
visa fler...
Johansson, Karin (1)
Klein, M. (1)
Liu, K. (1)
Minami, Y. (1)
Cheng, S. (1)
Zhang, Q. (1)
Peters, A (1)
Amini, Rose-Marie (1)
Kim, H. S. (1)
Knapskog, Anne-Brita (1)
Sakai, S. (1)
Schmidt, H. (1)
Pontén, Fredrik (1)
Huang, J. (1)
Fischer, F (1)
Günther, C. (1)
Ziegler, A. (1)
Takahashi, H. (1)
Bäckhed, Fredrik, 19 ... (1)
Wärnberg, Fredrik (1)
Groop, Leif (1)
Enblad, Gunilla (1)
Höglund, Martin (1)
Ma, W. (1)
Kogner, Per (1)
Liang, Y (1)
Andersen, Peter M. (1)
Lindqvist, Andreas (1)
Hansson, Ola (1)
Fex, Malin (1)
Wierup, Nils (1)
Alarcón-Riquelme, Ma ... (1)
Karlsen, Tom H (1)
Li, F. (1)
Landegren, Nils, 198 ... (1)
Bastard, Paul (1)
Casanova, Jean-Laure ... (1)
Kämpe, Olle (1)
Bergqvist, Michael (1)
Shen, S (1)
Seino, S. (1)
Bottai, Matteo (1)
Pejler, Gunnar (1)
Melander, Olle (1)
visa färre...
Lärosäte
Uppsala universitet (34)
Göteborgs universitet (21)
Karolinska Institutet (18)
Linköpings universitet (11)
Lunds universitet (9)
Umeå universitet (7)
visa fler...
Örebro universitet (2)
Sveriges Lantbruksuniversitet (2)
Högskolan i Halmstad (1)
Stockholms universitet (1)
Gymnastik- och idrottshögskolan (1)
visa färre...
Språk
Engelska (79)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy