SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1559 1174 ;lar1:(uu)"

Sökning: L773:1559 1174 > Uppsala universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gu, Gucci Jijuan, et al. (författare)
  • Role of Individual MARK Isoforms in Phosphorylation of Tau at Ser262 in Alzheimer's Disease
  • 2013
  • Ingår i: Neuromolecular medicine. - : Springer. - 1535-1084 .- 1559-1174. ; 15:3, s. 458-469
  • Tidskriftsartikel (refereegranskat)abstract
    • The microtubule-affinity regulating kinase (MARK) family consists of four highly conserved members that have been implicated in phosphorylation of tau protein, causing formation of neurofibrillary tangles in Alzheimer’s disease (AD). Understanding of roles by individual MARK isoform in phosphorylating tau has been limited due to lack of antibodies selective for each MARK isoform. In this study, we first applied the proximity ligation assay on cells to select antibodies specific for each MARK isoform. In cells, a CagA peptide specifically and significantly inhibited tau phosphorylation at Ser262 mediated by MARK4 but not other MARK isoforms. We then used these antibodies to study expression levels of MARK isoforms and interactions between tau and individual MARK isoforms in postmortem human brains. We found a strong and significant elevation of MARK4 expression and MARK4–tau interactions in AD brains, correlating with the Braak stages of the disease. These results suggest the MARK4–tau interactions are of functional importance in the progression of AD and the results also identify MARK4 as a promising target for AD therapy.
  •  
2.
  • Narkilahti, Susanna, et al. (författare)
  • Increased expression of caspase 2 in experimental and human temporal lobe epilepsy.
  • 2007
  • Ingår i: Neuromolecular medicine. - 1535-1084 .- 1559-1174. ; 9:2, s. 129-44
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal lobe epilepsy (TLE) is often caused by a neurodegenerative brain insult that triggers epileptogenesis, and eventually results in spontaneous seizures, i.e., epilepsy. Understanding the mechanisms of cell death is a key for designing new drug therapies for preventing the neurodegeneration associated with TLE. Here, we investigated the expression of caspase 2, a protein involved in programmed cell death, during the course of epilepsy. We investigated caspase 2 expression in hippocampal samples derived from patients operated on for drug refractory TLE. To understand the evolution of altered-caspase 2 expression during the epileptic process, we also examined caspase 2 expression and activity in the rat hippocampus after status epilepticus-induced acute damage, during epileptogenesis, and after the onset of epilepsy. Caspase 2 expression was enhanced in the hippocampal neurons in chronic TLE patients. In rats, status epilepticus-induced caspase 2 labeling paralleled the progression of neurodegeneration. Proteolytic activation and cleavage of caspase 2 was also detected in the rat brain undergoing epileptogenesis. Our data suggest that caspase 2-mediated programmed cell death participates in the seizure-induced degenerative process in experimental and human TLE.
  •  
3.
  • Warnecke, Andreas, et al. (författare)
  • Scavenger Receptor A Mediates the Clearance and Immunological Screening of MDA-Modified Antigen by M2-Type Macrophages
  • 2017
  • Ingår i: Neuromolecular medicine. - : Springer Science and Business Media LLC. - 1535-1084 .- 1559-1174. ; 19:4, s. 463-479
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we investigated the uptake of malondialdehyde (MDA)-modified myelin oligodendrocyte glycoprotein (MOG) in the context of lipid peroxidation and its implications in CNS autoimmunity. The use of custom-produced fluorescently labeled versions of MOG or MDA-modified MOG enabled us to study and quantify the uptake by different macrophage populations and to identify the responsible receptor, namely SRA. The SRA-mediated uptake of MDA-modified MOG is roughly tenfold more efficient compared to that of the native form. Notably, this uptake is most strongly associated with anti-inflammatory M2-type macrophages. MDA-modified MOG was demonstrated to be resistant to degradation by lysine-dependent proteases in vitro, but the overall digestion fragments appeared to be similar in cell lysates, although their relative abundance appeared to be altered as a result of faster uptake. Accordingly, MDA-modified MOG is processed for presentation by APCs, allowing maximized recall proliferation of MOG(35-55)-specific 2D2 T cells in vitro due to higher uptake. However, MDA modification of MOG did not enhance immune priming or disease course in the in vivo MOG-EAE model, but did induce antibody responses to both MOG and MDA adducts. Taken together our results indicate that MDA adducts primarily constitute clearance signals for phagocytes and promote rapid removal of antigen, which is subjected to immunological screening by previously licensed T cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy