SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1559 1182 ;mspu:(researchreview)"

Sökning: L773:1559 1182 > Forskningsöversikt

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lema Tomé, Carla, et al. (författare)
  • Inflammation and α-Synuclein's Prion-like Behavior in Parkinson's Disease-Is There a Link?
  • 2013
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 47:2, s. 561-574
  • Forskningsöversikt (refereegranskat)abstract
    • Parkinson's disease patients exhibit progressive spreading of aggregated α-synuclein in the nervous system. This slow process follows a specific pattern in an inflamed tissue environment. Recent research suggests that prion-like mechanisms contribute to the propagation of α-synuclein pathology. Little is known about factors that might affect the prion-like behavior of misfolded α-synuclein. In this review, we suggest that neuroinflammation plays an important role. We discuss causes of inflammation in the olfactory bulb and gastrointestinal tract and how this may promote the initial misfolding and aggregation of α-synuclein, which might set in motion events that lead to Parkinson's disease neuropathology. We propose that neuroinflammation promotes the prion-like behavior of α-synuclein and that novel anti-inflammatory therapies targeting this mechanism could slow disease progression.
  •  
2.
  • Sancho-Pelluz, J., et al. (författare)
  • Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration
  • 2008
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 1559-1182 .- 0893-7648. ; 38:3, s. 253-269
  • Forskningsöversikt (refereegranskat)abstract
    • Photoreceptor cell death is the major hallmark of a group of human inherited retinal degenerations commonly referred to as retinitis pigmentosa (RP). Although the causative genetic mutations are often known, the mechanisms leading to photoreceptor degeneration remain poorly defined. Previous research work has focused on apoptosis, but recent evidence suggests that photoreceptor cell death may result primarily from non-apoptotic mechanisms independently of AP1 or p53 transcription factor activity, Bcl proteins, caspases, or cytochrome c release. This review briefly describes some animal models used for studies of retinal degeneration, with particular focus on the rd1 mouse. After outlining the major features of different cell death mechanisms in general, we then compare them with results obtained in retinal degeneration models, where photoreceptor cell death appears to be governed by, among other things, changes in cyclic nucleotide metabolism, downregulation of the transcription factor CREB, and excessive activation of calpain and PARP. Based on recent experimental evidence, we propose a putative non-apoptotic molecular pathway for photoreceptor cell death in the rd1 retina. The notion that inherited photoreceptor cell death is driven by non-apoptotic mechanisms may provide new ideas for future treatment of RP.
  •  
3.
  • Sharma, Hari S., et al. (författare)
  • Exacerbation of Brain Pathology After Partial Restraint in Hypertensive Rats Following SiO2 Nanoparticles Exposure at High Ambient Temperature
  • 2013
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 48:2, s. 368-379
  • Forskningsöversikt (refereegranskat)abstract
    • This investigation examines the possibility that exposure to silica dust of hypertensive individuals may exacerbate brain pathology and sensory motor dysfunction at high environmental temperature. Hypertension was produced in rats (200-250 g) by two-kidney one clip (2K1C) method, and in these animals, SiO2 nanoparticles (NPs; 50 to 60 nm) were administered at 50 mg/kg, i.p. daily for 1 week. On the 8th day, these rats were subjected to partial restraint in a Perspex box for 4 h either at room temperature (21 A degrees C) or at 33 A degrees C in a biological oxygen demand incubator (wind velocity, 2.6 cm/s; relative humidity, 65 to 67 %). In these animals, behavioral functions, blood-brain barrier (BBB) permeability to Evans blue albumin (EBA) and radioiodine (([131]-)Iodine), brain water content and neuronal injuries were determined. Hypertensive rats subjected to 4 h restraint at room temperature did not exhibit BBB dysfunction, brain edema, neural injury, or alterations in rotarod or inclined plane angle performances. However, when these hypertensive rats were subjected to restraint at 33 A degrees C, breakdown of the cortical BBB (EBA, +38 %; radioiodine, +56 %), brain water (+0.88 %), neuronal damages (+18 %), and behavioral impairment were exacerbated. Interestingly, SiO2 exposure to these rats further exacerbated BBB breakdown (EBA, 280 %; radioiodine, 350 %), brain edema (4 %), and neural injury (30 %) after identical restraint depending on the ambient temperature. SiO2 treatment also induced brain pathology and alteration in behavioral functions in normotensive rats after restraint at high temperature. These observations clearly show that hypertension significantly enhances restraint-induced brain pathology, and behavioral anomalies particularly at high ambient temperature and SiO2 intoxication further exacerbated these brain pathologies and cognitive dysfunctions.
  •  
4.
  • Sobhan, Praveen, et al. (författare)
  • TLX-Its Emerging Role for Neurogenesis in Health and Disease
  • 2017
  • Ingår i: Molecular Neurobiology. - : Springer Science and Business Media LLC. - 0893-7648 .- 1559-1182. ; 54:1, s. 272-280
  • Forskningsöversikt (refereegranskat)abstract
    • The orphan nuclear receptor TLX, also called NR2E1, is a factor important in the regulation of neural stem cell (NSC) self-renewal, neurogenesis, and maintenance. As a transcription factor, TLX is vital for the expression of genes implicated in neurogenesis, such as DNA replication, cell cycle, adhesion and migration. It acts by way of repressing or activating target genes, as well as controlling protein-protein interactions. Growing evidence suggests that dysregulated TLX acts in the initiation and progression of human disorders of the nervous system. This review describes recent knowledge about TLX expression, structure, targets, and biological functions, relevant to maintaining adult neural stem cells related to both neuropsychiatric conditions and certain nervous system tumours.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy