SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1559 7016 ;lar1:(lu)"

Search: L773:1559 7016 > Lund University

  • Result 1-10 of 89
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agardh, Carl-David, et al. (author)
  • Hypoglycemic brain injury: metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration
  • 1981
  • In: Journal of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 1:1, s. 71-84
  • Journal article (peer-reviewed)abstract
    • Previous results have shown that severe, prolonged hypoglycemia leads to neuronal cell damage in, among other structures, the cerebral cortex and the hippocampus but not the cerebellum. In order to study whether or not this sparing of cerebellar cells is due to preservation of cerebellar energy stores, hypoglycemia of sufficient severity to abolish spontaneous EEG activity was induced for 30 and 60 min. At the end of these periods of hypoglycemia, as well as after a 30 min recovery period, cerebellar tissue was sampled for biochemical analyses or for histopathological analyses or for histopathological analyses by means of light and electron microscopy. After 30 min of hypoglycemia. the cerebellar energy state, defined in terms of the phosphocreatine, ATP, ADP, and AMP concentrations, was better preserved than in the cerebral cortex. After 60 min, gross deterioration of cerebellar energy state was observed in the majority of animals, and analyses of carbohydrate metabolites and amino acids demonstrated extensive consumption of endogenous substrates. In spite of this metabolic disturbance, histopathologic alterations were surprisingly discrete. After 30 min, no clear structural changes were observed. After 60 min, only small neurons in the molecular layer (basket cells) were affected, while Purkinje cells and granule cells showed few signs of damage. The results support our previous conclusion that the pathogenesis of cell damage in hypoglycemia is different from that in hypoxia-ischemia and indicate that other mechanisms than energy failure must contribute to neuronal cell damage in the brain.
  •  
2.
  •  
3.
  • Agardh, Carl-David, et al. (author)
  • Neurophysiological recovery after hypoglycemic coma in the rat: correlation with cerebral metabolism
  • 1983
  • In: Journal of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 3:1, s. 78-85
  • Journal article (peer-reviewed)abstract
    • Recovery of electroencephalographic activity and somatosensory evoked responses was studied in paralyzed and lightly anesthetized (70% N2O) rats in which profound hypoglycemia had been induced by insulin administration. The duration of severe hypoglycemia was defined as the duration of a flat electroencephalogram (EEG) recording (5, 30, and 60 min, respectively) before restitution with glucose. The restitution period was followed by continuous EEG monitoring and repeated tests for evoked potentials. After 180 min of recovery, the brains were frozen in situ with liquid nitrogen and analyzed for energy metabolism. In accordance with earlier metabolic studies from this laboratory, the recovery after 60 min of severe hypoglycemia was incomplete, with signs of permanent failure of energy metabolism. There was persistent ATP reduction proportional to the duration of the hypoglycemia. The short-term recovery of EEG and sensory evoked responses was proportional to the duration of severe hypoglycemia. The neurophysiological recovery after 5 min of severe hypoglycemia was complete. After 30 min of severe hypoglycemia, the evoked responses recovered but showed a significant prolongation of latency, compared with normal. After 60 min of severe hypoglycemia, no early evoked response and scanty EEG activity were observed. The neurophysiological observations indicate a persistent deficit of synaptic transmission in the somatosensory pathway, including the cortical projection. This can be correlated with neuropathologic changes that are particularly prominent in intermediate cortical layers, as previously shown.
  •  
4.
  • Ahmadi, Khazar, et al. (author)
  • Gray matter hypoperfusion is a late pathological event in the course of Alzheimer's disease
  • 2023
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 43:4, s. 565-580
  • Journal article (peer-reviewed)abstract
    • Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aβ-positive cognitively impaired compared to both Aβ-negative and Aβ-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aβ in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aβ pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aβ in preclinical phase of AD.
  •  
5.
  •  
6.
  • Ahnstedt, Hilda, et al. (author)
  • U0126 attenuates cerebral vasoconstriction and improves long-term neurologic outcome after stroke in female rats.
  • 2015
  • In: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 35:3, s. 454-460
  • Journal article (peer-reviewed)abstract
    • Sex differences are well known in cerebral ischemia and may impact the effect of stroke treatments. In male rats, the MEK1/2 inhibitor U0126 reduces ischemia-induced endothelin type B (ETB) receptor upregulation, infarct size and improves acute neurologic function after experimental stroke. However, responses to this treatment in females and long-term effects on outcome are not known. Initial experiments used in vitro organ culture of cerebral arteries, confirming ERK1/2 activation and increased ETB receptor-mediated vasoconstriction in female cerebral arteries. Transient middle cerebral artery occlusion (tMCAO, 120 minutes) was induced in female Wistar rats, with U0126 (30 mg/kg intraperitoneally) or vehicle administered at 0 and 24 hours of reperfusion, or with no treatment. Infarct volumes were determined and neurologic function was assessed by 6-point and 28-point neuroscores. ETB receptor-mediated contraction was studied with myograph and protein expression with immunohistochemistry. In vitro organ culture and tMCAO resulted in vascular ETB receptor upregulation and activation of ERK1/2 that was prevented by U0126. Although no effect on infarct size, U0126 improved the long-term neurologic function after experimental stroke in female rats. In conclusion, early prevention of the ERK1/2 activation and ETB receptor-mediated vasoconstriction in the cerebral vasculature after ischemic stroke in female rats improves the long-term neurologic outcome.Journal of Cerebral Blood Flow & Metabolism advance online publication, 10 December 2014; doi:10.1038/jcbfm.2014.217.
  •  
7.
  •  
8.
  • Ansar, Saema, et al. (author)
  • ERK1/2 inhibition attenuates cerebral blood flow reduction and abolishes ET(B) and 5-HT(1B) receptor upregulation after subarachnoid hemorrhage in rat.
  • 2006
  • In: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 26:Nov 2, s. 846-856
  • Journal article (peer-reviewed)abstract
    • Upregulation of endothelin B (ETB) and 5-hydroxytryptamine 1B (5-HT1B) receptors via transcription has been found after experimental subarachnoid hemorrhage (SAH), and this is associated with enhanced phosphorylation of the mitogen-activated protein kinase ( MAPK) extracellular signal-regulated kinase ( ERK1/2). In the present study, we hypothesized that inhibition of ERK1/2 alters the ETB and 5-HT1B receptor upregulation and at the same time prevents the sustained cerebral blood flow (CBF) reduction associated with SAH. The ERK1/2 inhibitor SB386023-b was injected intracisternally in conjunction with and after the induced SAH in rats. At 2 days after the SAH, cerebral arteries were harvested for quantitative real-time polymerase chain reaction, immunohistochemistry and analysis of contractile responses to endothelin-1 (ET-1; ETA and ETB receptor agonist) and 5-carboxamidotryptamine (5-CT; 5-HT1 receptor agonist) in a sensitive myograph. To investigate if ERK1/2 inhibition had an influence on the local and global CBF after SAH, an autoradiographic technique was used. At 48 h after induced SAH, global and regional CBF were reduced by 50%. This reduction was prevented by treatment with SB386023-b. The ERK1/2 inhibition also decreased the maximum contraction elicited by application of ET-1 and 5-CT in cerebral arteries compared with SAH. In parallel, ERK1/2 inhibition downregulated ETB and 5-HT1B receptor messenger ribonucleic acid and protein levels compared with the SAH. Cerebral ischemia after SAH involves vasoconstriction and subsequent reduction in the CBF. The results suggest that ERK1/2 inhibition might be a potential treatment for the prevention of cerebral vasospasm and ischemia associated with SAH.
  •  
9.
  •  
10.
  • Ansar, Saema, et al. (author)
  • Protein kinase C inhibition prevents upregulation of vascular ET(B) and 5-HT(1B) receptors and reverses cerebral blood flow reduction after subarachnoid haemorrhage in rats.
  • 2007
  • In: Journal of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 1559-7016 .- 0271-678X. ; 27:1, s. 21-32
  • Journal article (peer-reviewed)abstract
    • The pathogenesis of cerebral ischaemia after subarachnoid haemorrhage (SAH) still remains elusive. The purpose of the present study was to examine whether specific protein kinas C (PKC) inhibition in rats could alter the transcriptional SAH induced Endothelin (ET) type B and 5-hydroxytryptamine type 1B (5-HT1B) receptor upregulation and prevent the associated cerebral blood flow (CBF) reduction. The PKC inhibitor RO-31-7549 or vehicle was injected intracisternally after the induced SAH in rats (n = 3 to 10 in each groups for each method). The involvement of the PKC isoforms was investigated with Western blot; only PKC delta and PKC alpha subtypes were increased after SAH RO-31-7549 treatment abolished this. At 2 days after the SAH basilar and middle cerebral arteries were harvested and the contractile response to endothelin-1 (ET-1; ETA and ETB receptor agonist) and 5-carboxamidotryptamine (5-CT; 5-HT1B receptor agonist) were investigated with a myograph. The contractile responses to ET-1 and 5-CT were increased (P < 0.05) after SAH compared with sham operated rats. In parallel, the ETB and 5-HT1B receptor mRNA and protein expression were significantly elevated after SAH, as analysed by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively. Administration of RO-31-7549 prevented the upregulated contraction elicited by application of ET-1 and 5-CT in cerebral arteries and kept the ETB and 5-HT1B receptor mRNA and protein levels at pre-SAH levels. Regional and global CBF evaluated by an autoradiographic technique were reduced by 60% 64% after SAH (P < 0.05) and prevented by treatment with RO-31-7549. Our study suggests that PKC plays an important role in the pathogenesis of cerebral ischaemia after SAH.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 89

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view