SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1568 7864 OR L773:1568 7856 ;lar1:(ki)"

Sökning: L773:1568 7864 OR L773:1568 7856 > Karolinska Institutet

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elmroth, Kerstin, 1970, et al. (författare)
  • Cleavage of cellular DNA by calicheamicin γ1
  • 2003
  • Ingår i: DNA Repair. - 1568-7864 .- 1568-7856. ; 2:4, s. 363-374
  • Tidskriftsartikel (refereegranskat)abstract
    • It is assumed that the efficient antitumor activity of calicheamicin γ1 is mediated by its ability to introduce DNA double-strand breaks in cellular DNA. To test this assumption we have compared calicheamicin γ1-mediated cleavage of cellular DNA and purified plasmid DNA. Cleavage of purified plasmid DNA was not inhibited by excess tRNA or protein indicating that calicheamicin γ1 specifically targets DNA. Cleavage of plasmid DNA was not affected by incubation temperature. In contrast, cleavage of cellular DNA was 45-fold less efficient at 0°C as compared to 37° due to poor cell permeability at low temperatures. The ratio of DNA double-strand breaks (DSB) to single-stranded breaks (SSB) in cellular DNA was 1:3, close to the 1:2 ratio observed when calicheamicin γ1 cleaved purified plasmid DNA. DNA strand breaks introduced by calicheamicin γ1 were evenly distributed in the cell population as measured by the comet assay. Calicheamicin γ1-induced DSBs were repaired slowly but completely and resulted in high levels of H2AX phosphorylation and efficient cell cycle arrest. In addition, the DSB-repair deficient cell line Mo59J was hyper sensitive to calicheamicin γ. The data indicate that DSBs is the crucial damage after calicheamicin γ1 and that calicheamicin γ1-induced DSBs are recognized normally. The high DSB:SSB ratio, specificity for DNA and the even damage distribution makes calicheamicin γ1 a superior drug for studies of the DSB-response and emphasizes its usefulness in treatment of malignant disease.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Fahrer, Jörg, et al. (författare)
  • Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts
  • 2014
  • Ingår i: DNA Repair. - : Elsevier. - 1568-7864 .- 1568-7856. ; 18, s. 31-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytolethal distending toxin (CDT) is a unique genotoxin produced by several pathogenic bacteria. The tripartite protein toxin is internalized into mammalian cells via endocytosis followed by retrograde transport to the ER. Upon translocation into the nucleus, CDT catalyzes the formation of DNA double-strand breaks (DSBs) due to its intrinsic endonuclease activity. In the present study, we compared the DNA damage response (DDR) in human fibroblasts triggered by recombinant CDT to that of ionizing radiation (IR), a well-known DSB inducer. Furthermore, we dissected the pathways involved in the detection and repair of CDT-induced DNA lesions. qRT-PCR array-based mRNA and western blot analyses showed a partial overlap in the DDR pattern elicited by CDT and IR, with strong activation of both the ATM-Chk2 and the ATR-Chk1 axis. In line with its in vitro DNase I-like activity on plasmid DNA, neutral and alkaline Comet assay revealed predominant induction of DSBs in CDT-treated fibroblasts, whereas irradiation of cells generated higher amounts of SSBs and alkali-labile sites. Using confocal microscopy, the dynamics of the DSB surrogate marker γ-H2AX was monitored after pulse treatment with CDT or IR. In contrast to the fast induction and disappearance of γ-H2AX-foci observed in irradiated cells, the number of γ-H2AX-foci induced by CDT were formed with a delay and persisted. 53BP1 foci were also generated following CDT treatment and co-localized with γ-H2AX foci. We further demonstrated that ATM-deficient cells are very sensitive to CDT-induced DNA damage as reflected by increased cell death rates with concomitant cleavage of caspase-3 and PARP-1. Finally, we provided novel evidence that both homologous recombination (HR) and non-homologous end joining (NHEJ) protect against CDT-elicited DSBs. In conclusion, the findings suggest that CDT functions as a radiomimetic agent and, therefore, is an attractive tool for selectively inducing persistent levels of DSBs and unveiling the associated cellular responses.
  •  
6.
  •  
7.
  •  
8.
  • Lagerqvist, Anne, et al. (författare)
  • Both replication bypass fidelity and repair efficiency influence the yield of mutations per target dose in intact mammalian cells induced by benzo(a)pyrene-diol-epoxide and dibenzo(a,l)-pyrene-diol-epoxide.
  • 2008
  • Ingår i: DNA Repair. - : Elsevier. - 1568-7864 .- 1568-7856. ; 7:8, s. 1202-1012
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations induced by polycyclic aromatic hydrocarbons (PAH) are expected to be produced when error-prone DNA replication occurs across unrepaired DNA lesions formed by reactive PAH metabolites such as diol epoxides. The mutagenicity of the two PAH-diol epoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and (±)-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]pyrene (DBPDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. We applied the 32P-postlabelling assay to analyze adduct levels and the hprt gene mutation assay for monitoring mutations. It was found that the mutagenicity per target dose was 4 times higher for DBPDE compared to BPDE in NER proficient cells while in NER deficient cells, the mutagenicity per target dose was 1.4 times higher for BPDE. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the hprt gene. The results suggest that NER of BPDE lesions are 5 times more efficient than for DBPDE lesions, in NER proficient cells. However, DBPDE adducts block replication more efficiently and also induce 6 times more recombination events in the hprt gene than adducts of BPDE, suggesting that DBPDE adducts are, to a larger extent, bypassed by homologous recombination. The results obtained here indicate that the mutagenicity of PAH is influenced not only by NER, but also by replication bypass fidelity. This has been postulated earlier based on results using in vitro enzyme assays, but is now also being recognized in terms of forward mutations in intact mammalian cells.
  •  
9.
  • Lagerqvist, Anne, et al. (författare)
  • DNA repair and replication influence the number of mutations per adduct of polycyclic aromatic hydrocarbons in mammalian cells
  • 2011
  • Ingår i: DNA Repair. - : Elsevier BV. - 1568-7864 .- 1568-7856. ; 10:8, s. 877-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Polycyclic aromatic hydrocarbons (PAH) are an important class of environmental contaminants many of which require metabolic activation to DNA-reactive bay or fjord region diolepoxides (DE) in order to exert their mutagenic and carcinogenic effects. In this study, the mutagenicity of the bay region diolepoxides (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) and ()-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydrodibenzo[a,h]anthracene (DBADE) and the fjord region diolepoxides ()-anti-11,12-dihydroxy-13,14-epoxy-11,12,13,14-tetrahydrodibenzo[a,l]-pyrene (DBPDE) and (+/-)-anti-3,4-dihydroxy-1,2-epoxy-1,2,3,4-tetrahydrobenzo[c]-phenanthrene (BPhDE) was compared in nucleotide excision repair (NER) proficient and deficient hamster cell lines. The (32)P-postlabelling assay was applied to analyze DNA adduct levels and the Hprt gene mutation assay for monitoring mutations. Previously, we found that the mutagenicity per adduct was four times higher for DBPDE compared to BPDE in NER proficient cells. In these same cells, the mutagenicity of DBADE and BPhDE adducts was now found to be significantly lower compared to that of BPDE. In NER deficient cells the highest mutagenicity per adduct was found for BPDE and there was a tenfold and fivefold difference when comparing the BPDE data with the DBADE and BPhDE data, respectively. In order to investigate to what extent the mutagenicity of the different adducts in NER proficient cells was influenced by repair or replication bypass, we measured the overall NER incision rate, the rate of adduct removal, the rate of replication bypass and the frequency of induced recombination in the Hprt gene. Since NER turned out to be an important pathway for the yield of mutations, we further analyzed the role of transcription coupled NER versus global genome NER. However, our data demonstrate that neither of these pathways seems to be the sole factor determining the mutation frequency of the four PAH-DE and that the differences in the repair efficiency of these compounds could not be related to the presence of a bay or fjord region in the parent PAH.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy