SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:1664 3224 ;pers:(Nilsson Bo)"

Sökning: L773:1664 3224 > Nilsson Bo

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adler, Anna, et al. (författare)
  • A Robust Method to Store Complement C3 With Superior Ability to Maintain the Native Structure and Function of the Protein
  • 2022
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Complement components have a reputation to be very labile. One of the reasons for this is the spontaneous hydrolysis of the internal thioester that is found in both C3 and C4 (but not in C5). Despite the fact that approximate to 20,000 papers have been published on human C3 there is still no reliable method to store the protein without generating C3(H2O), a fact that may have affected studies of the conformation and function of C3, including recent studies on intracellular C3(H2O). The aim of this work was to define the conditions for storage of native C3 and to introduce a robust method that makes C3 almost resistant to the generation of C3(H2O). Here, we precipitated native C3 at the isoelectric point in low ionic strength buffer before freezing the protein at -80 degrees C. The formation of C3(H2O) was determined using cation exchange chromatography and the hemolytic activity of the different C3 preparations was determined using a hemolytic assay for the classical pathway. We show that freezing native C3 in the precipitated form is the best method to avoid loss of function and generation of C3(H2O). By contrast, the most efficient way to consistently generate C3(H2O) was to incubate native C3 in a buffer at pH 11.0. We conclude that we have defined the optimal storage conditions for storing and maintaining the function of native C3 without generating C3(H2O) and also the conditions for consistently generating C3(H2O).
  •  
2.
  • Eriksson, Oskar, 1984-, et al. (författare)
  • The Human Platelet as an Innate Immune Cell : Interactions Between Activated Platelets and the Complement System
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 10, s. 1-16
  • Forskningsöversikt (refereegranskat)abstract
    • Platelets play an essential role in maintaining homeostasis in the circulatory system after an injury by forming a platelet thrombus, but they also occupy a central node in the intravascular innate immune system. This concept is supported by their extensive interactions with immune cells and the cascade systems of the blood. In this review we discuss the close relationship between platelets and the complement system and the role of these interactions during thromboinflammation. Platelets are protected from complement-mediated damage by soluble and membrane-expressed complement regulators, but they bind several complement components on their surfaces and trigger complement activation in the fluid phase. Furthermore, localized complement activation may enhance the procoagulant responses of platelets through the generation of procoagulant microparticles by insertion of sublytic amounts of C5b9 into the platelet membrane. We also highlight the role of post-translational protein modifications in regulating the complement system and the critical role of platelets in driving these reactions. In particular, modification of disulfide bonds by thiol isomerases and protein phosphorylation by extracellular kinases have emerged as important mechanisms to fine-tune complement activity in the platelet microenvironment. Lastly, we describe disorders with perturbed complement activation where part of the clinical presentation includes uncontrolled platelet activation that results in thrombocytopenia, and illustrate how complement-targeting drugs are alleviating the prothrombotic phenotype in these patients. Based on these clinical observations, we discuss the role of limited complement activation in enhancing platelet activation and consider how these drugs may provide opportunities for further dissecting the complex interactions between complement and platelets.
  •  
3.
  • Fromell, Karin, et al. (författare)
  • Assessment of the Role of C3(H2O) in the Alternative Pathway
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we investigate the hydrolysis of C3 to C3(H2O) and its ability to initiate activation via the alternative pathway (AP) of the complement system. The internal thioester bond within C3 is hydrolyzed by water in plasma because of its inherent lability. This results in the formation of non-proteolytically activated C3(H2O) which is believed have C3b-like properties and be able to form an active initial fluid phase C3 convertase together with Factor B (FB). The generation of C3(H2O) occurs at a low but constant rate in blood, but the formation can be greatly accelerated by the interaction with various surfaces or nucleophilic and chaotropic agents. In order to more specifically elucidate the relevance of the C3(H2O) for AP activation, formation was induced in solution by repeated freeze/thawing, methylamine or KCSN treatment and named C3(x) where the x can be any of the reactive nucleophilic or chaotropic agents. Isolation and characterization of C3(x) showed that it exists in several forms with varying attributes, where some have more C3b-like properties and can be cleaved by Factor I in the presence of Factor H. However, in common for all these variants is that they are less active partners in initial formation of the AP convertase compared with the corresponding activity of C3b. These observations support the idea that formation of C3(x) in the fluid phase is not a strong initiator of the AP. It is rather likely that the AP mainly acts as an amplification mechanism of complement activation that is triggered by deposition of target-bound C3b molecules generated by other means.
  •  
4.
  • Halbgebauer, Rebecca, et al. (författare)
  • Thirty-Eight-Negative Kinase 1 Is a Mediator of Acute Kidney Injury in Experimental and Clinical Traumatic Hemorrhagic Shock
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 11, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Trauma represents a major socioeconomic burden worldwide. After a severe injury, hemorrhagic shock (HS) as a frequent concomitant aspect is a central driver of systemic inflammation and organ damage. The kidney is often strongly affected by traumatic-HS, and acute kidney injury (AKI) poses the patient at great risk for adverse outcome. Recently, thirty-eight-negative kinase 1 (TNK1) was proposed to play a detrimental role in organ damage after trauma/HS. Therefore, we aimed to assess the role of TNK1 in HS-induced kidney injury in a murine and apost hocanalysis of a non-human primate model of HS comparable to the clinical situation. Mice and non-human primates underwent resuscitated HS at 30 mmHg for 60 min. 5 h after the induction of shock, animals were assessed for systemic inflammation and TNK1 expression in the kidney.In vitro, murine distal convoluted tubule cells were stimulated with inflammatory mediators to gain mechanistic insights into the role of TNK1 in kidney dysfunction. In a translational approach, we investigated blood drawn from either healthy volunteers or severely injured patients at different time points after trauma (from arrival at the emergency room and at fixed time intervals until 10 days post injury; identifier: NCT02682550,). A pronounced inflammatory response, as seen by increased IL-6 plasma levels as well as early signs of AKI, were observed in mice, non-human primates, and humans after trauma/HS. TNK1 was found in the plasma early after trauma-HS in trauma patients. Renal TNK1 expression was significantly increased in mice and non-human primates after HS, and these effects with concomitant induction of apoptosis were blocked by therapeutic inhibition of complement C3 activation in non-human primates. Mechanistically,in vitrodata suggested that IL-6 rather than C3 cleavage products induced upregulation of TNK1 and impaired barrier function in renal epithelial cells. In conclusion, these data indicate that C3 inhibitionin vivomay inhibit an excessive inflammatory response and mediator release, thereby indirectly neutralizing TNK1 as a potent driver of organ damage. In future studies, we will address the therapeutic potential of direct TNK1 inhibition in the context of severe tissue trauma with different degrees of additional HS.
  •  
5.
  • Karasu, Ebru, et al. (författare)
  • Targeting Complement Pathways in Polytrauma- and Sepsis-Induced Multiple-Organ Dysfunction
  • 2019
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Exposure to traumatic or infectious insults results in a rapid activation of the complement cascade as major fluid defense system of innate immunity. The complement system acts as a master alarm system during the molecular danger response after trauma and significantly contributes to the clearance of DAMPs and PAMPs. However, depending on the origin and extent of the damaged macro- and micro-milieu, the complement system can also be either excessively activated or inhibited. In both cases, this can lead to a maladaptive immune response and subsequent multiple cellular and organ dysfunction. The arsenal of complement-specific drugs offers promising strategies for various critical conditions after trauma, hemorrhagic shock, sepsis, and multiple organ failure. The imbalanced immune response needs to be detected in a rational and real-time manner before the translational therapeutic potential of these drugs can be fully utilized. Overall, the temporal-spatial complement response after tissue trauma and during sepsis remains somewhat enigmatic and demands a clinical triad: reliable tissue damage assessment, complement activation monitoring, and potent complement targeting to highly specific rebalance the fluid phase innate immune response.
  •  
6.
  • Lipcsey, Miklós, et al. (författare)
  • The Outcome of Critically Ill COVID-19 Patients Is Linked to Thromboinflammation Dominated by the Kallikrein/Kinin System
  • 2021
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • An important manifestation of severe COVID-19 is the ARDS-like lung injury that is associated with vascular endothelialitis, thrombosis, and angiogenesis. The intravascular innate immune system (IIIS), including the complement, contact, coagulation, and fibrinolysis systems, which is crucial for recognizing and eliminating microorganisms and debris in the body, is likely to be involved in the pathogenesis of COVID-19 ARDS. Biomarkers for IIIS activation were studied in the first 66 patients with COVID-19 admitted to the ICU in Uppsala University Hospital, both cross-sectionally on day 1 and in 19 patients longitudinally for up to a month, in a prospective study. IIIS analyses were compared with biochemical parameters and clinical outcome and survival. Blood cascade systems activation leading to an overreactive conjunct thromboinflammation was demonstrated, reflected in consumption of individual cascade system components, e.g., FXII, prekallikrein, and high molecular weight kininogen and in increased levels of activation products, e.g., C4d, C3a, C3d,g, sC5b-9, TAT, and D-dimer. Strong associations were found between the blood cascade systems and organ damage, illness severity scores, and survival. We show that critically ill COVID-19 patients display a conjunct activation of the IIIS that is linked to organ damage of the lung, heart, kidneys, and death. We present evidence that the complement and in particular the kallikrein/kinin system is strongly activated and that both systems are prognostic markers of the outcome of the patients suggesting their role in driving the inflammation. Already licensed kallikrein/kinin inhibitors are potential drugs for treatment of critically ill patients with COVID-19.
  •  
7.
  • Martin, Myriam, et al. (författare)
  • Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis
  • 2023
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. MethodsCitrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. ResultsC1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. ConclusionCitrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
  •  
8.
  • Messerer, David Alexander Christian, et al. (författare)
  • Animal-Free Human Whole Blood Sepsis Model to Study Changes in Innate Immunity
  • 2020
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 11, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Studying innate immunity in humans is crucial for understanding its role in the pathophysiology of systemic inflammation, particularly in the complex setting of sepsis. Therefore, we standardized a step-by-step process from the venipuncture to the transfer in a human model system, while closely monitoring the inflammatory response for up to three hours. We designed an animal-free, human whole blood sepsis model using a commercially available, simple to use, tubing system. First, we analyzed routine clinical parameters, including cell count and blood gas analysis. Second, we demonstrated that extracellular activation markers (e.g., CD11b and CD62l) as well as intracellular metabolic (intracellular pH) and functional (generation of radical oxygen species) features remained stable after incubation in the whole blood model. Third, we mimicked systemic inflammation during early sepsis by exposure of whole blood to pathogen-associated molecular patterns. Stimulation with lipopolysaccharide revealed the capability of the model system to evoke a sepsis-like inflammatory phenotype of innate immunity. In summary, the presented model serves as a convenient, economic, and reliable platform to study innate immunity in human whole blood, which may yield clinically important insights.
  •  
9.
  • Mohebnasab, Maedeh, et al. (författare)
  • Current and Future Approaches for Monitoring Responses to Anti-complement Therapeutics
  • 2019
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 10, s. 1-13
  • Forskningsöversikt (refereegranskat)abstract
    • Aberrations in complement system functions have been identified as either direct or indirect pathophysiological mechanisms in many diseases and pathological conditions, such as infections, autoimmune diseases, inflammation, malignancies, and allogeneic transplantation. Currently available techniques to study complement include quantification of (a) individual complement components, (b) complement activation products, and (c) molecular mechanisms/function. An emerging area of major interest in translational studies aims to study and monitor patients on complement regulatory drugs for efficacy as well as adverse events. This area is progressing rapidly with several anti-complement therapeutics under development, in clinical trials, or already in clinical use. In this review, we summarized the appropriate indications, techniques, and interpretations of basic complement analyses, exemplified by a number of clinical disorders.
  •  
10.
  • Nilsson, Bo, et al. (författare)
  • How COVID-19 and other pathological conditions and medical treatments activate our intravascular innate immune system
  • 2023
  • Ingår i: Frontiers in Immunology. - : Frontiers Media S.A.. - 1664-3224. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 has been shown to have a multifaceted impact on the immune system. In a recently published article in Front Immunol, we show that the intravascular innate immune system (IIIS) is strongly activated in severe COVID-19 with ARDS and appears to be one of the causes leading to severe COVID-19. In this article, we describe the IIIS and its physiological function, but also the strong pro-inflammatory effects that are observed in COVID-19 and in various other pathological conditions and treatments such as during ischemia reperfusion injury and in treatments where biomaterials come in direct contact with blood in, e.g., extracorporeal and intravasal treatments. In the present article, we describe how the IIIS, a complex network of plasma proteins and blood cells, constitute the acute innate immune response of the blood and discuss the effects that the IIIS induces in pathological disorders and treatments in modern medicine.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14
Typ av publikation
tidskriftsartikel (9)
forskningsöversikt (5)
Typ av innehåll
refereegranskat (14)
Författare/redaktör
Nilsson Ekdahl, Kris ... (13)
Fromell, Karin (6)
Huber-Lang, Markus (6)
Persson, Barbro (6)
Eriksson, Oskar, 198 ... (5)
visa fler...
Sandholm, Kerstin (4)
Adler, Anna (3)
Mohlin, Camilla, 197 ... (3)
Manivel, Vivek Anand (2)
Frithiof, Robert (2)
Lipcsey, Miklós (2)
Hultström, Michael, ... (2)
Lambris, John D. (2)
Radermacher, Peter (2)
Skattum, Lillemor (2)
Karasu, Ebru (2)
Gunnarsson, Iva (1)
Potempa, Jan (1)
Teramura, Yuji (1)
Blom, Anna M. (1)
Gebhard, Florian (1)
Nyman, Dag (1)
Keating, Brendan J. (1)
Martin, Myriam (1)
Zipfel, Peter F. (1)
Kapetanovic, Meliha ... (1)
Kirschfink, Michael (1)
Hug, Stefan (1)
Stratmann, Alexander ... (1)
Erber, Maike (1)
Vidoni, Laura (1)
Braun, Christian Kar ... (1)
Messerer, David Alex ... (1)
Huang, Shan (1)
Bielecka, Ewa (1)
Scavenius, Carsten (1)
Eggertsen, Gösta (1)
Kalbitz, Miriam (1)
Zhao, Fei (1)
Nilsson, Sara C. (1)
Åman, Amanda (1)
Dührkop, Claudia (1)
Halbgebauer, Rebecca (1)
Braun, Christian K. (1)
Palmer, Annette (1)
Braumueller, Sonja (1)
Schultze, Anke (1)
Schaefer, Fabian (1)
Bueckle, Sarah (1)
visa färre...
Lärosäte
Uppsala universitet (14)
Linnéuniversitetet (13)
Lunds universitet (4)
Göteborgs universitet (1)
Karolinska Institutet (1)
Språk
Engelska (14)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy